Main Page: Difference between revisions

From Cornell University Computational Optimization Open Textbook - Optimization Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
(3 intermediate revisions by 2 users not shown)
Line 40: Line 40:
       <li>[[Geometric programming]]</li>
       <li>[[Geometric programming]]</li>
       <li>[[Nondifferentiable Optimization]]</li>
       <li>[[Nondifferentiable Optimization]]</li>
      <li>[[Evolutionary multimodal optimization]]</li>
      <li>[[Stackelberg leadership model]]</li>
      <li>[[Quadratic constrained quadratic programming]]</li>
      <li>[[Derivative free optimization]]</li>
</div>
</div>
|-
|-
Line 76: Line 72:
       <li>[[Unit commitment problem]]</li>
       <li>[[Unit commitment problem]]</li>
       <li>[[Portfolio optimization]]</li>
       <li>[[Portfolio optimization]]</li>
      <li>[[A-star algorithm]]</li>
</div>
|-
! style="padding:2px" | <h2 id="mp-dyk-h2" style="margin:3px; background:#cef2e0; font-size:120%; font-weight:bold; border:1px solid #a3bfb1; text-align:left; color:#000; padding:0.2em 0.4em;"> Emerging Applications</h2>
|-
| style="color:#000;padding:2px 5px 5px 15px" | <div id="mp-dyk">
      <li>[[Wing shape optimization]]</li>
      <li>[[Optimization in game theory]]</li>
      <li>[[Quantum computing for optimization]]</li>
</div>
</div>


Line 139: Line 125:
       <li>[[Frank-Wolfe]]</li>
       <li>[[Frank-Wolfe]]</li>
       <li>[[Sparse Reconstruction with Compressed Sensing]]</li>
       <li>[[Sparse Reconstruction with Compressed Sensing]]</li>
      <li>[[Adadelta]]</li>
      <li>[[Adafactor]]</li>
      <li>[[AdamW]]</li>
      <li>[[Adamax]]</li>
      <li>[[FTRL algorithm]]</li>
      <li>[[Lion algorithm]]</li>
      <li>[[LossScaleOptimizer]]</li>
      <li>[[Nadam]]</li>
</div>
</div>
|-
|-
! style="padding:2px" | <h2 id="mp-otd-h2" style="margin:3px; background:#cedff2; font-size:120%; font-weight:bold; border:1px solid #a3b0bf; text-align:left; color:#000; padding:0.2em 0.4em;">Black-box Optimization</h2>
! style="padding:2px" | <h2 id="mp-otd-h2" style="margin:3px; background:#cedff2; font-size:120%; font-weight:bold; border:1px solid #a3b0bf; text-align:left; color:#000; padding:0.2em 0.4em;">Emerging Applications</h2>
|-
|-
| style="color:#000;padding:2px 5px 5px 15px" | <div id="mp-dyk">
| style="color:#000;padding:2px 5px 5px 15px" | <div id="mp-dyk">
       <li>[[Bayesian optimization]]</li>
       <li>[[Wing shape optimization]]</li>
       <li>[[Genetic algorithm]]</li>
       <li>[[Optimization in game theory]]</li>
       <li>[[Simulated annealing]]</li>
       <li>[[Quantum computing for optimization]]</li>
      <li>[[Particle swarm optimization]]</li>
      <li>[[Differential evolution]]</li>
</div>
</div>
|}
|}

Revision as of 20:45, 9 October 2023

Welcome to the Cornell University Computational Optimization Open Textbook

This electronic textbook is a student-contributed open-source text covering a variety of topics on process optimization.
If you have any comments or suggestions on this open textbook, please contact Professor Fengqi You.

Linear Programming (LP)

NonLinear Programming (NLP)

Deterministic Global Optimization

Dynamic Programming

Traditional Applications

Mixed-Integer Linear Programming (MILP)

Mixed-Integer NonLinear Programming (MINLP)

Optimization under Uncertainty

Optimization for Machine Learning and Data Analytics

Emerging Applications

Cornell Prof. Fengqi You Research Group