Optimization with absolute values: Difference between revisions
Jump to navigation
Jump to search
Line 6: | Line 6: | ||
==Numerical Example== | ==Numerical Example== | ||
<math>\min{|x_1| + 2|x_2| + |x_3|} </math | <math>\min{|x_1| + 2|x_2| + |x_3|} </math> | ||
<math> \begin{align} | <math> \begin{align} | ||
\ s.t. x_1 + x_2 - x_3 \le 10 \\ | \ s.t. x_1 + x_2 - x_3 \le 10 \\ | ||
Line 34: | Line 34: | ||
<math> \begin{align} | <math> \begin{align} | ||
\s.t. x_1 + x_2 - x_3 \le 10 \\ | \ s.t. x_1 + x_2 - x_3 \le 10 \\ | ||
x_1 - 3x_2 + 2x_3= 12 | x_1 - 3x_2 + 2x_3= 12 | ||
\end{align}</math> | \end{align}</math> |
Revision as of 15:48, 20 November 2020
Authors: Matthew Chan (mdc297), Yilian Yin (), Brian Amado (ba392), Peter (pmw99), Dewei Xiao (dx58) - SYSEN 5800 Fall 2020
Steward: Fengqi You
Numerical Example
We replace the absolute value quantities with a single variable:
We must introduce additional constraints to ensure we do not lose any information by doing this substitution:
The problem has now been reformulated as a linear programming problem that can be solved normally:
The optimum value for the objective function is , which occurs when and and .