Outer-approximation (OA): Difference between revisions

From Cornell University Computational Optimization Open Textbook - Optimization Wiki
Jump to navigation Jump to search
Line 8: Line 8:
minimize      <math> f(x)= y_{1} +y_{2} + \big(x_{1}\big)^{2} +\big(x_{2}\big)^{2} </math>
minimize      <math> f(x)= y_{1} +y_{2} + \big(x_{1}\big)^{2} +\big(x_{2}\big)^{2} </math>


subject to    
subject to     <math>\big(x_{1}-2\big)^{2}-x_{2} \leq 0</math>
              <math>x_{1}-2y_{1} \geq 0 </math>
 
==Conclusion==
==Conclusion==


==References==
==References==

Revision as of 02:59, 26 November 2021

Author: Yousef Aloufi (CHEME 6800 Fall 2021)

Introduction

Theory

Example

minimize

subject to

              

Conclusion

References