Outer-approximation (OA): Difference between revisions
Jump to navigation
Jump to search
Line 6: | Line 6: | ||
== Example == | == Example == | ||
Minimize <math display=block> f(x)= y_{1} +y_{2} + \big(x_{1}\big)^{2} +\big(x_{2}\big)^{2} </math> | ''Minimize'' <math display=block> f(x)= y_{1} +y_{2} + \big(x_{1}\big)^{2} +\big(x_{2}\big)^{2} </math> | ||
Subject to <math display=block>\big(x_{1}-2\big)^{2}-x_{2} \leq 0</math> | ''Subject to'' <math display=block>\big(x_{1}-2\big)^{2}-x_{2} \leq 0</math> | ||
<math display=block>x_{1}-2y_{1} \geq 0</math> | <math display=block>x_{1}-2y_{1} \geq 0</math> | ||
<math display=block>x_{1}-x_{2}-3 \big(1-y_{1}\big) \geq 0</math> | <math display=block>x_{1}-x_{2}-3 \big(1-y_{1}\big) \geq 0</math> | ||
Line 17: | Line 17: | ||
<math display=block>0 \leq x_{2}\leq 4</math> | <math display=block>0 \leq x_{2}\leq 4</math> | ||
<math display=block>y_{1},y_{2} \in \big\{0,1\big\} </math> | <math display=block>y_{1},y_{2} \in \big\{0,1\big\} </math> | ||
'''Solution'''<br> | |||
''Step 1a:'' Start from | |||
<math display=inline>y_{1}=y_{2}=1</math> and solve the NLP below: <br> | |||
''Minimize'' <math display=block> f= 2+ \big(x_{1}\big)^{2} +\big(x_{2}\big)^{2} </math> | |||
''Subject to'' <math display=block>\big(x_{1}-2\big)^{2}-x_{2} \leq 0</math> | |||
<math display=block>x_{1}-2 \geq 0</math> | |||
<math display=block>x_{1}-x_{2} \geq 0</math> | |||
<math display=block>x_{1} \geq 0</math> | |||
<math display=block>x_{2}-1 \geq 0</math> | |||
<math display=block>x_{1}+x_{2} \geq 3</math> | |||
<math display=block>0 \leq x_{1}\leq 4</math> | |||
<math display=block>0 \leq x_{2}\leq 4</math> | |||
''Solution:''<math display=inline>x_{1}=2, x_{2}=1, Upper Bound=7</math> and solve the NLP below: <br> | |||
==Conclusion== | ==Conclusion== | ||
==References== | ==References== |
Revision as of 05:25, 26 November 2021
Author: Yousef Aloufi (CHEME 6800 Fall 2021)
Introduction
Theory
Example
Minimize
Subject to
Solution
Step 1a: Start from and solve the NLP below:
Minimize
Subject to
Solution: and solve the NLP below: