Outer-approximation (OA): Difference between revisions

From Cornell University Computational Optimization Open Textbook - Optimization Wiki
Jump to navigation Jump to search
Line 30: Line 30:
<math display=block>0 \leq x_{2}\leq 4</math>
<math display=block>0 \leq x_{2}\leq 4</math>
''Solution: ''<math display=inline>x_{1}=2, x_{2}=1</math>, Upper Bound = 7 <br>
''Solution: ''<math display=inline>x_{1}=2, x_{2}=1</math>, Upper Bound = 7 <br>
'''Step 1a:'''  Solve the MILP master problem with OA for <math display=inline> x^{*} =[2,1] </math> : <br>
<math display=block>f\big(x\big) =\big( x_{1} \big)^{2} +\big( x_{2} \big)^{2},~~ \bigtriangledown  f\big(x\big)=[2x_{1}~~2x_{1}]^{T} ~~for~~x^{*} =[2,1]^{T} </math>


==Conclusion==
==Conclusion==


==References==
==References==

Revision as of 05:52, 26 November 2021

Author: Yousef Aloufi (CHEME 6800 Fall 2021)

Introduction

Theory

Example

Minimize Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)= y_{1} +y_{2} + \big(x_{1}\big)^{2} +\big(x_{2}\big)^{2} } Subject to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \big(x_{1}-2\big)^{2}-x_{2} \leq 0} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_{1}-2y_{1} \geq 0}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_{1}+y_{1}-1\geq 0}
Solution
Step 1a: Start from and solve the NLP below:
Minimize
Subject to
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_{1} \geq 0}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_{1}+x_{2} \geq 3} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0 \leq x_{1}\leq 4}
Solution: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle x_{1}=2, x_{2}=1} , Upper Bound = 7

Step 1a: Solve the MILP master problem with OA for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle x^{*} =[2,1] }  :
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f{\big (}x{\big )}={\big (}x_{1}{\big )}^{2}+{\big (}x_{2}{\big )}^{2},~~\bigtriangledown f{\big (}x{\big )}=[2x_{1}~~2x_{1}]^{T}~~for~~x^{*}=[2,1]^{T}}

Conclusion

References