Outer-approximation (OA): Difference between revisions
| Line 30: | Line 30: | ||
<math display=block>0 \leq x_{2}\leq 4</math> | <math display=block>0 \leq x_{2}\leq 4</math> | ||
''Solution: ''<math display=inline>x_{1}=2, x_{2}=1</math>, Upper Bound = 7 <br> | ''Solution: ''<math display=inline>x_{1}=2, x_{2}=1</math>, Upper Bound = 7 <br> | ||
'''Step 1a:''' Solve the MILP master problem with OA for <math display=inline> x^{*} =[2,1] </math> : <br> | |||
<math display=block>f\big(x\big) =\big( x_{1} \big)^{2} +\big( x_{2} \big)^{2},~~ \bigtriangledown f\big(x\big)=[2x_{1}~~2x_{1}]^{T} ~~for~~x^{*} =[2,1]^{T} </math> | |||
==Conclusion== | ==Conclusion== | ||
==References== | ==References== | ||
Revision as of 05:52, 26 November 2021
Author: Yousef Aloufi (CHEME 6800 Fall 2021)
Introduction
Theory
Example
Minimize Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)= y_{1} +y_{2} + \big(x_{1}\big)^{2} +\big(x_{2}\big)^{2} } Subject to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \big(x_{1}-2\big)^{2}-x_{2} \leq 0} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_{1}-2y_{1} \geq 0}
Step 1a: Start from and solve the NLP below:
Minimize
Step 1a: Solve the MILP master problem with OA for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle x^{*} =[2,1] }
:
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f{\big (}x{\big )}={\big (}x_{1}{\big )}^{2}+{\big (}x_{2}{\big )}^{2},~~\bigtriangledown f{\big (}x{\big )}=[2x_{1}~~2x_{1}]^{T}~~for~~x^{*}=[2,1]^{T}}