Outer-approximation (OA): Difference between revisions
Jump to navigation
Jump to search
| Line 33: | Line 33: | ||
'''Step 1a:''' Solve the MILP master problem with OA for <math display=inline> x^{*} =[2,1] </math> : <br> | '''Step 1a:''' Solve the MILP master problem with OA for <math display=inline> x^{*} =[2,1] </math> : <br> | ||
<math display=block>f\big(x\big) =\big( x_{1} \big)^{2} +\big( x_{2} \big)^{2},~~ \bigtriangledown f\big(x\big)=[2x_{1}~~2x_{1}]^{T} ~~for~~x^{*} =[2,1]^{T} </math> | <math display=block>f\big(x\big) =\big( x_{1} \big)^{2} +\big( x_{2} \big)^{2},~~ \bigtriangledown f\big(x\big)=[2x_{1}~~2x_{1}]^{T} ~~for~~x^{*} =[2,1]^{T} </math> | ||
<math display=block>f\big(x^{*}\big)+ \bigtriangledown f\big(x^{*}\big)^{T}\big(x-x^{*}\big)=5+[4~~2] \begin{bmatrix}x_{1}-2 \\x_{2}-1 \end{bmatrix} </math> | <math display=block>f\big(x^{*}\big)+ \bigtriangledown f\big(x^{*}\big)^{T}\big(x-x^{*}\big)=5+[4~~2] \begin{bmatrix}x_{1}-2 \\x_{2}-1 \end{bmatrix}=5+4\big(x_{1}-2\big)+2\big(x_{2}-1\big)</math> | ||
==Conclusion== | ==Conclusion== | ||
==References== | ==References== | ||
Revision as of 06:06, 26 November 2021
Author: Yousef Aloufi (CHEME 6800 Fall 2021)
Introduction
Theory
Example
Minimize
Subject to
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_{1}+y_{2}\geq 1}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0 \leq x_{1}\leq 4}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_{1},y_{2} \in \big\{0,1\big\} }
Solution
Step 1a: Start from and solve the NLP below:
Minimize Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f= 2+ \big(x_{1}\big)^{2} +\big(x_{2}\big)^{2} } Subject to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \big(x_{1}-2\big)^{2}-x_{2} \leq 0} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_{1}-2 \geq 0} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_{1}-x_{2} \geq 0} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_{1} \geq 0} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_{2}-1 \geq 0}
Solution: , Upper Bound = 7
Step 1a: Solve the MILP master problem with OA for :
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f{\big (}x{\big )}={\big (}x_{1}{\big )}^{2}+{\big (}x_{2}{\big )}^{2},~~\bigtriangledown f{\big (}x{\big )}=[2x_{1}~~2x_{1}]^{T}~~for~~x^{*}=[2,1]^{T}}
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f{\big (}x^{*}{\big )}+\bigtriangledown f{\big (}x^{*}{\big )}^{T}{\big (}x-x^{*}{\big )}=5+[4~~2]{\begin{bmatrix}x_{1}-2\\x_{2}-1\end{bmatrix}}=5+4{\big (}x_{1}-2{\big )}+2{\big (}x_{2}-1{\big )}}