Outer-approximation (OA): Difference between revisions

From Cornell University Computational Optimization Open Textbook - Optimization Wiki
Jump to navigation Jump to search
Line 40: Line 40:
''Minimize'' <math display=block> \alpha </math>
''Minimize'' <math display=block> \alpha </math>
''Subject to'' <math display=block>\alpha\geq y_{1}+y_{2}+5+4\big(x_{1}-2\big)+2\big(x_{2}-1\big) </math>
''Subject to'' <math display=block>\alpha\geq y_{1}+y_{2}+5+4\big(x_{1}-2\big)+2\big(x_{2}-1\big) </math>
<math display=block>-x_{2}\leq0</math>


==Conclusion==
==Conclusion==


==References==
==References==

Revision as of 06:22, 26 November 2021

Author: Yousef Aloufi (CHEME 6800 Fall 2021)

Introduction

Theory

Example

Minimize

Subject to
Solution
Step 1a: Start from and solve the NLP below:
Minimize
Subject to
Solution: , Upper Bound = 7

Step 1a: Solve the MILP master problem with OA for  :

Minimize

Subject to

Conclusion

References