Outer-approximation (OA): Difference between revisions
| Line 34: | Line 34: | ||
<math display=block>f\big(x\big) =\big( x_{1} \big)^{2} +\big( x_{2} \big)^{2},~~ \bigtriangledown f\big(x\big)=[2x_{1}~~~~2x_{1}]^{T} ~~for~~x^{*} =[2~~~~1]^{T} </math> | <math display=block>f\big(x\big) =\big( x_{1} \big)^{2} +\big( x_{2} \big)^{2},~~ \bigtriangledown f\big(x\big)=[2x_{1}~~~~2x_{1}]^{T} ~~for~~x^{*} =[2~~~~1]^{T} </math> | ||
<math display=block>f\big(x^{*}\big)+ \bigtriangledown f\big(x^{*}\big)^{T}\big(x-x^{*}\big)=5+[4~~~~2] \begin{bmatrix}x_{1}-2 \\x_{2}-1 \end{bmatrix}=5+4\big(x_{1}-2\big)+2\big(x_{2}-1\big)</math> | <math display=block>f\big(x^{*}\big)+ \bigtriangledown f\big(x^{*}\big)^{T}\big(x-x^{*}\big)=5+[4~~~~2] \begin{bmatrix}x_{1}-2 \\x_{2}-1 \end{bmatrix}=5+4\big(x_{1}-2\big)+2\big(x_{2}-1\big)</math> | ||
<br> | |||
<math display=block>g\big(x\big)=\big(x_{1}-2\big)^{2}-x_{2},~~ \bigtriangledown g\big(x\big)=[2x_{1}-4~~~~-1]^{T}~~for~~x^{*} =[2~~~~1]^{T} </math> | <math display=block>g\big(x\big)=\big(x_{1}-2\big)^{2}-x_{2},~~ \bigtriangledown g\big(x\big)=[2x_{1}-4~~~~-1]^{T}~~for~~x^{*} =[2~~~~1]^{T} </math> | ||
Revision as of 06:23, 26 November 2021
Author: Yousef Aloufi (CHEME 6800 Fall 2021)
Introduction
Theory
Example
Minimize Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)= y_{1} +y_{2} + \big(x_{1}\big)^{2} +\big(x_{2}\big)^{2} } Subject to
Step 1a: Start from and solve the NLP below:
Minimize
Step 1a: Solve the MILP master problem with OA for :
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f{\big (}x{\big )}={\big (}x_{1}{\big )}^{2}+{\big (}x_{2}{\big )}^{2},~~\bigtriangledown f{\big (}x{\big )}=[2x_{1}~~~~2x_{1}]^{T}~~for~~x^{*}=[2~~~~1]^{T}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f\big(x^{*}\big)+ \bigtriangledown f\big(x^{*}\big)^{T}\big(x-x^{*}\big)=5+[4~~~~2] \begin{bmatrix}x_{1}-2 \\x_{2}-1 \end{bmatrix}=5+4\big(x_{1}-2\big)+2\big(x_{2}-1\big)}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g\big(x\big)=\big(x_{1}-2\big)^{2}-x_{2},~~ \bigtriangledown g\big(x\big)=[2x_{1}-4~~~~-1]^{T}~~for~~x^{*} =[2~~~~1]^{T} }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g\big(x^{*}\big)+ \bigtriangledown g\big(x^{*}\big)^{T}\big(x-x^{*}\big)=-1+[0~~~~-1] \begin{bmatrix}x_{1}-2 \\x_{2}-1 \end{bmatrix}=-x_{2}}
Minimize Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha } Subject to