Adafactor: Difference between revisions

From Cornell University Computational Optimization Open Textbook - Optimization Wiki
Jump to navigation Jump to search
Line 43: Line 43:
** Compute adaptive step size:
** Compute adaptive step size:
<math>\alpha_t = \max(\epsilon_2, \text{RMS}(X_{t-1})) \rho_t</math>
<math>\alpha_t = \max(\epsilon_2, \text{RMS}(X_{t-1})) \rho_t</math>
*Compute gradient:
**Compute gradient:
<math>G_t = \nabla f_t(X_{t-1})</math>
<math>G_t = \nabla f_t(X_{t-1})</math>
**Update second moment estimate:
**Update second moment estimate:

Revision as of 16:56, 10 December 2024

Author: Aolei Cao (ac3237), Ziyang Li (zl986), Junjia Liang (jl4439) (ChemE 6800 Fall 2024)

Stewards: Nathan Preuss, Wei-Han Chen, Tianqi Xiao, Guoqing Hu

Introduction

Problem formulation

1. Objective

Minimize the loss function , where and is the weight vector to be optimized.

2. Parameters

  • Gradient:

  • Second moment estimate:

  • Where:
    • is the running average of the squared gradient.
    • is the corrected decay parameter.
    • is a regularization constant.
  • Step size:

  • Where:
    • is the relative step size.
    • is a regularization constant.
    • is the root mean square, defined as:

3. Algorithms

Adafactor for Weighted Vectors

Inputs:

  • Initial point:
  • Relative step sizes: for to
  • Second moment decay: for to , with
  • Regularization constants:
  • Clipping threshold:

Algorithm:

  • For to :
    • Compute adaptive step size:

    • Compute gradient:

    • Update second moment estimate:

    • Compute normalized gradient:

    • Apply clipping:

    • Update parameter:

  • End for

Adafactor for Weighted Matrices

Inputs:

  • Initial point:
  • Relative step sizes: for to
  • Second moment decay: for to , with
  • Regularization constants:
  • Clipping threshold:

Algorithm:

  1. For to :
    1. Compute adaptive step size:
  
    1. Compute gradient:
  
    1. Update row-wise second moment:
  
    1. Update column-wise second moment:
  
    1. Update overall second moment estimate:
  
    1. Compute normalized gradient:
  
    1. Apply clipping:
  
    1. Update parameter:
  
  1. End for

4. Proposed Hyperparameters for Adafactor

  • Regularization constant 1:
  • Regularization constant 2:
  • Clipping threshold:
  • Relative step size:
  • Second moment decay:

Numerical Examples

Applications

Conclusion

Reference