Adafactor: Difference between revisions

From Cornell University Computational Optimization Open Textbook - Optimization Wiki
Jump to navigation Jump to search
Line 85: Line 85:
<math>X_0 = \begin{bmatrix} 0.7 &-0.5& 0.9\\ -1.1 & 0.8& -1.6\\1.2&-0.7& 0.4 \end{bmatrix}</math>
<math>X_0 = \begin{bmatrix} 0.7 &-0.5& 0.9\\ -1.1 & 0.8& -1.6\\1.2&-0.7& 0.4 \end{bmatrix}</math>


'''Gradient (​<math>G_t</math>):'''
'''Initial gradient (​<math>G_t</math>):'''
 
Gradient of the loss function with respect to X


<math>G_t = \begin{bmatrix} 0.3&-0.2&0.4\\ -0.5&0.6&-0.1\\0.2&-0.4 &0.3 \end{bmatrix}</math>
<math>G_t = \begin{bmatrix} 0.3&-0.2&0.4\\ -0.5&0.6&-0.1\\0.2&-0.4 &0.3 \end{bmatrix}</math>
Line 107: Line 109:
Define the relative step size
Define the relative step size


<math>\rho_t = \min(10^{-2}, 1/\sqrt{1})= 10^{-2}</math>
<math>\rho_1 = \min(10^{-2}, 1/\sqrt{1})= 10^{-2}</math>


'''Step 1.1: Root Mean Square(RMS) calculation for <math>X_0</math>'''
'''Step 1.1: Root Mean Square(RMS) calculation for <math>X_0</math>'''
Line 123: Line 125:
<math>RMS(X_0) = \sqrt{\frac{6.85}{9}}\approx 0.806</math>
<math>RMS(X_0) = \sqrt{\frac{6.85}{9}}\approx 0.806</math>


Find the Learning Rate Scaling (αt​):
'''Step 1.2: Find the Learning Rate Scaling ('''<math>\alpha_t</math>​'''):'''
 
Learning rate formula
 
<math>\alpha_1 = max(\epsilon_2,RMS(X_0))\cdot p_1</math>
 
Substitute the RMS
 
<math>\alpha_1 = max(0.001,0.806)\cdot 0.01=0.00806</math>
 
 
'''<big>Step 2: Compute <math>G^{2}_t</math>​ (Element-wise Square of Gradient)</big>'''
 
Square the gradient value
 
<math>G^{2}_t = \begin{bmatrix} 0.3^2&(-0.2)^2&0.4^2\\ (-0.5)^2&0.6^2&(-0.1)^2\\0.2^2&(-0.4)^2 &0.3^2 \end{bmatrix}</math>
 
 
<math>G^{2}_t = \begin{bmatrix} 0.09& 0.04&0.16\\ 0.25&0.36&0.01\\0.04&0.16&0.09\end{bmatrix}</math>
 
 
'''<big>Step 3: Find the moment estimate</big>'''
 
 
'''Step 3.1: Compute row moments (<math>R_t</math>)'''
 
This equation computes the row-wise second moments ('''<math>R_t</math>''' ​) as an exponential moving average of past moments ('''<math>R_{t-1}</math>''') and the current row-wise mean of squared gradients ( <small><math>G^{2}_t</math></small>​ ), with a balance controlled by (<math>\hat{\beta}_{2t}</math>).
 
For <math>G^{2}_t=\mathbb{R}^{m\times n} </math>
 
<math>R_t = \hat{\beta_{2t}} \cdot R_{t-1} + (1-\hat{\beta})\cdot (\tfrac{1}{m}\textstyle \sum_{j=1}^m \displaystyle G^{2}_t[i,j]+\epsilon_1) </math>
 
Since <math>\hat{\beta}_{2t} = 1 - t^{-0.8}</math>, for first iteration: <math>\hat{\beta}_{21} = 0</math>. And because <math>\epsilon_1 </math> is too small, we ignore it. The update of '''<math>R_1</math>''' is:
 
<math>R_{1} = \tfrac{1}{m}\textstyle \sum_{j=1}^m \displaystyle G^{2}_t[i,j] </math>
 
Row-wise mean ('''<math>R_t</math>'''):
 
<math>R_1 = \begin{bmatrix} \tfrac{0.09+0.04+0.16}{3} \\ \tfrac{0.25+0.36+0.01}{3}\\\tfrac{0.04+0.16+0.09}{3} \end{bmatrix} = \begin{bmatrix} 0.0967\\ 0.2067\\0.0967\end{bmatrix} </math>
 
 
'''Step 3.2: Compute column moments (<math>C_t</math>)'''
 
The prcoess is same as row moments
 
<math>C_t = \hat{\beta}\cdot C_{{t-1}} + (1-\hat{\beta})\cdot (\tfrac{1}{n}\textstyle \sum_{j=1}^n \displaystyle G^{2}_t[i,j]+\epsilon_1) </math>
 
Column Moments ('''<math>C_t</math>'''​):
 
<math>C_1 = \begin{bmatrix} \tfrac{0.09+025+0.04}{3} \\ \tfrac{0.04+0.36+0.16}{3}\\\tfrac{0.16+0.01+0.09}{3} \end{bmatrix} = \begin{bmatrix} 0.1267\\ 0.1867\\0.0867\end{bmatrix} </math>
 
 
'''Step 3.3: Second Moment Estimate ('''<math>V_t</math>​''')'''
 
The Second Moment Estimate is calculated as the outer product of the row moments ('''<math>R_t</math>'''​) and column moments ('''<math>C_t</math>'''​).
 
<math>V_t = R_t \otimes C_t</math>
 
<math>V_t = \begin{bmatrix} 0.0967\\0.2067\\0.0967 \end{bmatrix} \otimes    \begin{bmatrix} 0.1267&0.1867&0.0867\\ \end{bmatrix} </math>
 
 
<math>V_t =  \begin{bmatrix} 0.0122&0.0180&0.0084\\ 0.0262&0.0386&0.0179\\ 0.0122&0.0180&0.0084\end{bmatrix} </math>
 
 
'''<big>Step 4: Update the vector (<math>U_t </math>)</big>'''
 
 
'''step 4.1: Find the vector value of <math>U_t </math>'''
 
Formula of '''<small><math>U_t </math></small>'''
 
<math>U_t = \frac{G_t}{\sqrt{V_t+\epsilon_1}} </math>
 
 
Substitute '''<small><math>C_t</math></small>''' and <small><math>V_t</math></small>
 
<math>U_1 =    \frac{\begin{bmatrix}0.3&-0.2&0.4 \\ -0.5&0.6&-0.1\\0.2&-0.4&0.3 \end{bmatrix}}{\sqrt{\begin{bmatrix} 0.0122&0.0180&0.0084\\ 0.0262&0.0386&0.0179\\0.0122&0.0180&0.0084 \end{bmatrix}}} </math>
 
 
<math>U_1 = \begin{bmatrix} 2.711&-1.489&4.370\\-3.090&3.055&-0.747\\1.807&-2.978&3.278  \end{bmatrix} </math>
 
 
'''step 4.2: Clipped Update Vector <math>\hat{U_t} </math>'''
 
Formula of '''<small><math>\hat{U_t} </math></small>'''
 
'''<small><math>\hat{U_t} = \frac{U_t}{max(1,\tfrac{RMS(U_t)}{d})        } </math></small>'''
 
 
Calculate RMS of '''<math>U_t </math>'''
 
'''<small><math>RMS(U_t) = \sqrt{\tfrac{1}{9}  \sum_{i=1}^9 U_t[i]^2}  \approx 3.303 </math></small>'''
 
 
Since RMS('''<math>U_t </math>'''​)>d, scale '''<math>U_t </math>'''​ by <math>\tfrac{1}{3.303} </math>
 
'''<math>\hat{U_t} =  \begin{bmatrix} 0.965&-0.53&1.556 \\-1.1&1.088&-0.266\\0.664&-1.06&1.167 \end{bmatrix} </math>'''
 
 
 
'''<big>Step 4: Weight Update (</big>'''<math>X_1 </math>'''<big>)</big>'''
 
 
 
 
 
 
 


== Applications ==
== Applications ==
== Conclusion ==
== Conclusion ==
== Reference ==
== Reference ==

Revision as of 01:58, 11 December 2024

Author: Aolei Cao (ac3237), Ziyang Li (zl986), Junjia Liang (jl4439) (ChemE 6800 Fall 2024)

Stewards: Nathan Preuss, Wei-Han Chen, Tianqi Xiao, Guoqing Hu

Introduction

Problem formulation

1. Objective

Minimize the loss function , where and is the weight vector to be optimized.

2. Parameters

  • Gradient:

  • Second moment estimate:

  • Where:
    • is the running average of the squared gradient.
    • is the corrected decay parameter.
    • is a regularization constant.
  • Step size:

  • Where:
    • is the relative step size.
    • is a regularization constant.
    • is the root mean square, defined as:

3. Algorithms

Adafactor for Weighted Vectors

Inputs:

  • Initial point:
  • Relative step sizes: for to
  • Second moment decay: for to , with
  • Regularization constants:
  • Clipping threshold:

Algorithm:

  • For to :
    • Compute adaptive step size:
    • Compute gradient:
    • Update second moment estimate:
    • Compute normalized gradient:
    • Apply clipping:
    • Update parameter:
  • End for

Adafactor for Weighted Matrices

Inputs:

  • Initial point:
  • Relative step sizes: for to
  • Second moment decay: for to , with
  • Regularization constants:
  • Clipping threshold:

Algorithm:

  • For to :
    • Compute adaptive step size:
    • Compute gradient:
    • Update row-wise second moment:
    • Update column-wise second moment:
    • Update overall second moment estimate:
    • Compute normalized gradient:
    • Apply clipping:
    • Update parameter:
  • End for

4. Proposed Hyperparameters for Adafactor

  • Regularization constant 1:
  • Regularization constant 2:
  • Clipping threshold:
  • Relative step size:
  • Second moment decay:

Numerical Examples

Step-by-step instructions for determining the result of the first iteration.

Problem setup

Initial weights ():

Initial gradient (​):

Gradient of the loss function with respect to X


Hyperparameters setup

(Minimum learning rate scaling factor))

(Regularization constant)

(Clipping threshold)

(Relative step size)

(Second moment decay)


Step 1: Learning Rate Scaling

Define the relative step size

Step 1.1: Root Mean Square(RMS) calculation for

Root Mean Square(RMS) calculation for

RMS formula

Substitute the initial weights

Step 1.2: Find the Learning Rate Scaling ():

Learning rate formula

Substitute the RMS


Step 2: Compute ​ (Element-wise Square of Gradient)

Square the gradient value



Step 3: Find the moment estimate


Step 3.1: Compute row moments ()

This equation computes the row-wise second moments ( ​) as an exponential moving average of past moments () and the current row-wise mean of squared gradients ( ​ ), with a balance controlled by ().

For

Since , for first iteration: . And because is too small, we ignore it. The update of is:

Row-wise mean ():


Step 3.2: Compute column moments ()

The prcoess is same as row moments

Column Moments (​):


Step 3.3: Second Moment Estimate ()

The Second Moment Estimate is calculated as the outer product of the row moments (​) and column moments (​).



Step 4: Update the vector ()


step 4.1: Find the vector value of

Formula of


Substitute and



step 4.2: Clipped Update Vector

Formula of


Calculate RMS of


Since RMS(​)>d, scale ​ by


Step 4: Weight Update ()





Applications

Conclusion

Reference