Outer-approximation (OA): Difference between revisions

From Cornell University Computational Optimization Open Textbook - Optimization Wiki
Jump to navigation Jump to search
No edit summary
Line 6: Line 6:


== Example ==
== Example ==
minimize      <math> f(x)= y_{1} +y_{2} + \big(x_{1}\big)^{2} +\big(x_{2}\big)^{2} </math>
Minimize <math display=block> f(x)= y_{1} +y_{2} + \big(x_{1}\big)^{2} +\big(x_{2}\big)^{2} </math>
 
Subject to <math display=block>\big(x_{1}-2\big)^{2}-x_{2} \leq 0</math>
subject to     <math>\big(x_{1}-2\big)^{2}-x_{2} \leq 0</math>
<math display=block>x_{1}-2y_{1} \geq 0</math>
              <math>x_{1}-2y_{1} \geq 0 </math>
<math display=block>x_{1}-x_{2}-3 \big(1-y_{1}\big) \geq 0</math>
<math display=block>x_{1}+y_{1}-1\geq 0</math>
<math display=block>x_{2}-y_{2}\geq 0</math>
<math display=block>x_{1}+x_{2}\geq 3y_{1}</math>
<math display=block>y_{1}+y_{2}\geq 1</math>
<math display=block>0 \leq x_{1} \leq 4</math>
<math display=block>0 \leq x_{2} \leq 4</math>
<math display=block>y_{1},y_{2} \in  \big\{0,1\big\} </math>


==Conclusion==
==Conclusion==


==References==
==References==

Revision as of 04:19, 26 November 2021

Author: Yousef Aloufi (CHEME 6800 Fall 2021)

Introduction

Theory

Example

Minimize

Subject to

Conclusion

References