From Cornell University Computational Optimization Open Textbook - Optimization Wiki
|
|
Line 33: |
Line 33: |
| '''Step 1a:''' Solve the MILP master problem with OA for <math display=inline> x^{*} =[2,1] </math> : <br> | | '''Step 1a:''' Solve the MILP master problem with OA for <math display=inline> x^{*} =[2,1] </math> : <br> |
| <math display=block>f\big(x\big) =\big( x_{1} \big)^{2} +\big( x_{2} \big)^{2},~~ \bigtriangledown f\big(x\big)=[2x_{1}~~2x_{1}]^{T} ~~for~~x^{*} =[2,1]^{T} </math> | | <math display=block>f\big(x\big) =\big( x_{1} \big)^{2} +\big( x_{2} \big)^{2},~~ \bigtriangledown f\big(x\big)=[2x_{1}~~2x_{1}]^{T} ~~for~~x^{*} =[2,1]^{T} </math> |
| <math display=block>f\big(x^{*}\big)+ \bigtriangledown f\big(x^{*}\big)^{T}\big(x-x^{*}\big)=5+[4~~2] \begin{bmatrix}x_{1}-2 \\x_{2}-1 \end{bmatrix} </math> | | <math display=block>f\big(x^{*}\big)+ \bigtriangledown f\big(x^{*}\big)^{T}\big(x-x^{*}\big)=5+[4~~2] \begin{bmatrix}x_{1}-2 \\x_{2}-1 \end{bmatrix}=5+4\big(x_{1}-2\big)+2\big(x_{2}-1\big)</math> |
|
| |
|
| ==Conclusion== | | ==Conclusion== |
|
| |
|
| ==References== | | ==References== |
Revision as of 06:06, 26 November 2021
Author: Yousef Aloufi (CHEME 6800 Fall 2021)
Introduction
Theory
Example
Minimize
Subject to
Solution
Step 1a: Start from
and solve the NLP below:
Minimize
Subject to
Solution: , Upper Bound = 7
Step 1a: Solve the MILP master problem with OA for :
Conclusion
References