Outer-approximation (OA): Difference between revisions

From Cornell University Computational Optimization Open Textbook - Optimization Wiki
Jump to navigation Jump to search
Line 42: Line 42:
''Subject to'' <math display=block>\alpha\geq y_{1}+y_{2}+5+4\big(x_{1}-2\big)+2\big(x_{2}-1\big) </math>
''Subject to'' <math display=block>\alpha\geq y_{1}+y_{2}+5+4\big(x_{1}-2\big)+2\big(x_{2}-1\big) </math>
<math display=block>-x_{2}\leq0</math>
<math display=block>-x_{2}\leq0</math>
<math display=block>x_{1}-2y_{1} \geq 0</math>
<math display=block>x_{1}-x_{2}-3 \big(1-y_{1}\big) \geq 0</math>
<math display=block>x_{1}+y_{1}-1\geq 0</math>
<math display=block>x_{2}-y_{2}\geq 0</math>
<math display=block>x_{1}+x_{2}\geq 3y_{1}</math>
<math display=block>y_{1}+y_{2}\geq 1</math>
<math display=block>0 \leq x_{1}\leq 4</math>
<math display=block>0 \leq x_{2}\leq 4</math>
<math display=block>y_{1},y_{2} \in  \big\{0,1\big\} </math>


==Conclusion==
==Conclusion==


==References==
==References==

Revision as of 06:25, 26 November 2021

Author: Yousef Aloufi (CHEME 6800 Fall 2021)

Introduction

Theory

Example

Minimize

Subject to
Solution
Step 1a: Start from and solve the NLP below:
Minimize
Subject to
Solution: , Upper Bound = 7

Step 1a: Solve the MILP master problem with OA for  :


Minimize

Subject to

Conclusion

References