From Cornell University Computational Optimization Open Textbook - Optimization Wiki
|
|
Line 42: |
Line 42: |
| ''Subject to'' <math display=block>\alpha\geq y_{1}+y_{2}+5+4\big(x_{1}-2\big)+2\big(x_{2}-1\big) </math> | | ''Subject to'' <math display=block>\alpha\geq y_{1}+y_{2}+5+4\big(x_{1}-2\big)+2\big(x_{2}-1\big) </math> |
| <math display=block>-x_{2}\leq0</math> | | <math display=block>-x_{2}\leq0</math> |
| | <math display=block>x_{1}-2y_{1} \geq 0</math> |
| | <math display=block>x_{1}-x_{2}-3 \big(1-y_{1}\big) \geq 0</math> |
| | <math display=block>x_{1}+y_{1}-1\geq 0</math> |
| | <math display=block>x_{2}-y_{2}\geq 0</math> |
| | <math display=block>x_{1}+x_{2}\geq 3y_{1}</math> |
| | <math display=block>y_{1}+y_{2}\geq 1</math> |
| | <math display=block>0 \leq x_{1}\leq 4</math> |
| | <math display=block>0 \leq x_{2}\leq 4</math> |
| | <math display=block>y_{1},y_{2} \in \big\{0,1\big\} </math> |
|
| |
|
| ==Conclusion== | | ==Conclusion== |
|
| |
|
| ==References== | | ==References== |
Revision as of 06:25, 26 November 2021
Author: Yousef Aloufi (CHEME 6800 Fall 2021)
Introduction
Theory
Example
Minimize
Subject to
Solution
Step 1a: Start from
and solve the NLP below:
Minimize
Subject to
Solution: , Upper Bound = 7
Step 1a: Solve the MILP master problem with OA for :
Minimize
Subject to
Conclusion
References