From Cornell University Computational Optimization Open Textbook - Optimization Wiki
|
|
Line 51: |
Line 51: |
| <math display=block>0 \leq x_{2}\leq 4</math> | | <math display=block>0 \leq x_{2}\leq 4</math> |
| <math display=block>y_{1},y_{2} \in \big\{0,1\big\} </math> | | <math display=block>y_{1},y_{2} \in \big\{0,1\big\} </math> |
| | |
| | ''MILP Solution: ''<math display=inline>x_{1}=2, x_{2}=1,y_{1}=1, y_{2}=0</math>, Lower Bound = 6 <br> |
| | Lower Bound<Upper Bound, Integer Cut:<math display=inline>y_{1}- y_{2}\leq 0</math> |
|
| |
|
| ==Conclusion== | | ==Conclusion== |
|
| |
|
| ==References== | | ==References== |
Revision as of 06:32, 26 November 2021
Author: Yousef Aloufi (CHEME 6800 Fall 2021)
Introduction
Theory
Example
Minimize
Subject to
Solution
Step 1a: Start from
and solve the NLP below:
Minimize
Subject to
Solution: , Upper Bound = 7
Step 1a: Solve the MILP master problem with OA for :
Minimize
Subject to
MILP Solution: , Lower Bound = 6
Lower Bound<Upper Bound, Integer Cut:
Conclusion
References