Exponential transformation: Difference between revisions

From Cornell University Computational Optimization Open Textbook - Optimization Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
Author: Daphne Duvivier (dld237), Daniela Gil (dsg254), Jacqueline Jackson (jkj49, Sinclaire Mills (sm2795), Vanessa Nobre (vmn28) Fall 2021
Author: Daphne Duvivier (dld237), Daniela Gil (dsg254), Jacqueline Jackson (jkj49, Sinclaire Mills (sm2795), Vanessa Nobre (vmn28) Fall 2021
== Introduction ==
Exponential transformations are used for convexification of geometric programming constraints (posynominal) nonconvex optimization problems.
Geometric Programming
== Theory & Methodology ==
Exponential transformation begins with a posynominal noncovex function of the form <ref>{{cite news |last=Boyd |first=Stephen |last2=Kim |first2=Seung-Jean |last3=Vandenberghe |first3=Lieven |last4=Hassibi |first4=Arash |format=PDF |title=A tutorial on geometric programming |work=Springer Science+Business Media, LLC 2007 |publisher=Springer Science+Business Media, LLC 2007 |date=2007-04-10 |deadurl=no |archiveurl=https://web.stanford.edu/~boyd/papers/pdf/gp_tutorial.pdf }}</ref> :
<math> f(x) = \sum_{k=1}^N c_k{x_1}^{a_1k}{x_2}^{a_2k}....{x_n}^{a_nk} </math>
where <math> c_k \geq 0 </math> and <math> x_n \geq0 </math>
A transformation of <math> x_n = e^u_i </math> is applied
Transformed into convex MINLP
<math>
\ln c
</math>
== Proof ==
== Numerical Example ==
== Applications ==
== Conclusion ==
Exponential transformation is a powerful method to linearize
== References ==
<references />

Revision as of 13:04, 27 November 2021

Author: Daphne Duvivier (dld237), Daniela Gil (dsg254), Jacqueline Jackson (jkj49, Sinclaire Mills (sm2795), Vanessa Nobre (vmn28) Fall 2021


Introduction

Exponential transformations are used for convexification of geometric programming constraints (posynominal) nonconvex optimization problems.


Geometric Programming


Theory & Methodology

Exponential transformation begins with a posynominal noncovex function of the form [1] :

where and

A transformation of is applied


Transformed into convex MINLP


Proof

Numerical Example

Applications

Conclusion

Exponential transformation is a powerful method to linearize


References