Conjugate gradient methods: Difference between revisions

From Cornell University Computational Optimization Open Textbook - Optimization Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 2: Line 2:


== Introduction ==
== Introduction ==
<math>F(\textbf{x})=\frac{1}{2}\textbf{x}^{T}\textbf{A}\textbf{x}-\textbf{b}\textbf{x}<math>
The conjugate gradient method (CG) was originally invented to minimize a quadratic function:<br>
<math>F(\textbf{x})=\frac{1}{2}\textbf{x}^{T}\textbf{A}\textbf{x}-\textbf{b}\textbf{x}</math>
 
== Theory ==
== Theory ==
== The conjugate gradient method ==
== The conjugate gradient method ==

Revision as of 00:47, 28 November 2021

Author: Alexandra Roberts, Anye Shi, Yue Sun (SYSEN6800 Fall 2021)

Introduction

The conjugate gradient method (CG) was originally invented to minimize a quadratic function:

Theory

The conjugate gradient method

numerical example

Application

Conclusion

Reference