|
|
Line 5: |
Line 5: |
| | | |
|
| |
|
| $x \in \mathbb{R}^N$ often not really sparse but aproximently sparse
| | Introduction |
|
| |
|
|
| | x ∈ R N often not really sparse but approximately sparse |
|
| |
|
| $\Phi \in \mathbb{R} ^{M \times N}$ for $M \ll N$ is a Random Gaussian or Bernoulli matrix
| | Φ ∈ R M × N for M � N is a Random Gaussian or Bernoulli matrix |
|
| |
|
|
| | y ∈ R M are the observed y samples |
|
| |
|
| $y \in \mathbb{R}^M$ are the observed $y$ samples
| | e ∈ R M noise vector k e k 2 ≤ η |
|
| |
|
|
| | s.t. |
|
| |
|
| $e \in \mathbb{R}^M$ nosie vector $ \| e\|_2 \leq \eta$
| | How can we reconstruct x from y = Φx + e |
|
| |
|
|
| | The goal is to reconstruct x 0 ∈ R N given y and Φ |
|
| |
|
| s.t.
| | Sensing matrix Φ must satisfy RIP i.e. Random Gaussian or Bernoulli ma- |
|
| |
|
| | traceries satisfies (cite) |
|
| |
|
| <math>\sum_i^N</math>
| | let [ N ] = { 1, . . . , N } be an index set |
|
| |
|
| the support s is the smallest delta that satisfies RIP | | [ N ] enumerates the columns of Φ and x |
|
| |
|
| | Φ is an undetermined systems with infinite solutions. Why l 2 norm does |
|
| |
|
| <math>(1 - \delta_s) \| x \|_2 ^2 \leq \| \Phi x \|_2^2 \leq (1 + \delta_s) \| x \|_2 ^2</math>
| | not work |
| | |
| | What is compression is sunomunus with to the sparsity. |
| | |
| | The problem formulation is to recover sparse data x 0 ∈ R N |
| | |
| | The support of x 0 is supp ( x 0 ) = { i ∈ [ N ] : x 0 ( i ) 6 = 0 } |
| | |
| | we say x is k sparse when | supp ( x )| ≤ k |
| | |
| | We are interested in the smallest supp ( x ) , i.e. min(supp ( x ) ) |
| | |
| | Restricted isometry property (RIP) Introduced by Candes, Tao |
| | |
| | Random Gaussian and Bernoulli satisfies RIP |
| | |
| | Let Φ ∈ R M × N satsify RIP, Let [ N ] be an index set |
| | |
| | Before we get into RIP lets talk about RIC |
|
| |
|
| | Restricted Isometry Constant (RIC) is the smallest δ | s s.t. s ⊆ [ N ] that satsifies the RIP condition |
|
| |
|
| = Introduction = <nowiki><math display="inline">x \in \mathbb{R}^N</math></nowiki> often not really sparse but aproximently sparse <nowiki><math display="inline">\Phi \in \mathbb{R} ^{M \times N}</math></nowiki> for <nowiki><math display="inline">M \ll N</math></nowiki> is a Random Gaussian or Bernoulli matrix <nowiki><math display="inline">y \in \mathbb{R}^M</math></nowiki> are the observed <nowiki><math display="inline">y</math></nowiki> samples <nowiki><math display="inline">e \in \mathbb{R}^M</math></nowiki> nosie vector <nowiki><math display="inline">\| e\|_2 \leq \eta</math></nowiki> s.t. How can we reconstruct <nowiki><math display="inline">x</math></nowiki> from <nowiki><math display="inline">y = \Phi x + e</math></nowiki> The goal is to reconstruct <nowiki><math display="inline">x_0 \in \mathbb{R}^N</math></nowiki> given <nowiki><math display="inline">y</math></nowiki> and <nowiki><math display="inline">\Phi</math></nowiki> Sensing matrix <nowiki><math display="inline">\Phi</math></nowiki> must satisfy RIP i.e. Random Gaussian or Bernoulli matraxies satsifies (cite) let <nowiki><math display="inline">[N] = \{1, \dots , N\}</math></nowiki> be an index set <nowiki><math display="inline">[N]</math></nowiki> enumerates the colums of <nowiki><math display="inline">\Phi</math></nowiki> and <nowiki><math display="inline">x</math></nowiki> <nowiki><math display="inline">\Phi</math></nowiki> is an underdetermined systems with infinite solutions. Why <nowiki><math display="inline">l_2</math></nowiki> norm does not work What is compression is sunomunus with to the sparcity. The problem formulation is to recover sparse data <nowiki><math display="inline">x_0 \in R^N</math></nowiki> The support of <nowiki><math display="inline">x_0</math></nowiki> is <nowiki><math display="inline">supp(x_0) = \{i \in [N]: x_0(i) \neq 0 \}</math></nowiki> we say <nowiki><math display="inline">x</math></nowiki> is <nowiki><math display="inline">k</math></nowiki> sparse when <nowiki><math display="inline">|supp(x)| \leq k</math></nowiki> We are interested in the smallest <nowiki><math display="inline">supp(x)</math></nowiki>, i.e. min(<nowiki><math display="inline">supp(x)</math></nowiki>) Restricted isometry property (RIP) Introduced by Candes, Tao Random Gausian and Bernoulli satsifies RIP Let <nowiki><math display="inline">\Phi \in \mathbb{R}^{M \times N}</math></nowiki> satsify RIP, Let <nowiki><math display="inline">[N]</math></nowiki> be an index set Before we get into RIP lets talk about RIC Resiricted Isometry Constant (RIC) is the smallest <nowiki><math display="inline">\delta |_s</math></nowiki> s.t. <nowiki><math display="inline">s \subseteq [N]</math></nowiki> that satsifies the RIP condition For <nowiki><math display="inline">s</math></nowiki> is a restrciton on <nowiki><math display="inline">x</math></nowiki> denoted by <nowiki><math display="inline">x_{|s}</math></nowiki> <nowiki><math display="inline">x \in \mathbb{R}^N \mbox{to} s</math></nowiki> k-sparse <nowiki><math display="inline">x</math></nowiki> s.t. RIP is satisified the s = <nowiki><math display="inline">|\Gamma|</math></nowiki> i.e. <nowiki><math display="inline">s \subseteq [N]</math></nowiki> and <nowiki><math display="inline">\Phi_{|s} \subseteq \Phi</math></nowiki> where the columns of <nowiki><math display="inline">\Phi_{|s}</math></nowiki> is indexed by <nowiki><math display="inline">i \in S</math></nowiki>
| | For s is a restriction on x denoted by x | s x ∈ R N tos k-sparse x s.t. RIP is |
|
| |
|
| <nowiki><math display="block">(x_{|S})_i = \left\{</nowiki>
| | satisfied the s = | Γ | i.e. s ⊆ [ N ] and Φ | s ⊆ Φ where the columns of Φ | s is |
|
| |
|
| \begin{array}{c c}
| | indexed by i ∈ S |
|
| |
|
| x_i, & if \ i \in S\\
| | � |
|
| |
|
| 0 & otherwise
| | x i , i f i ∈ S |
|
| |
|
| \end{array}
| | ( x | S ) i = |
|
| |
|
| \right.<nowiki></math></nowiki>
| | 0 otherwise |
|
| |
|
| RIP defined as | | RIP defined as |
|
| |
|
| <nowiki><math display="block">(1 - \delta_s) \| x \|_2 ^2 \leq \| \Phi x \|_2^2 \leq (1 + \delta_s) \| x \|_2 ^2</math></nowiki>
| | ( 1 − δ s )k x k 22 ≤ k Φx k 22 ≤ ( 1 + δ s )k x k 22 |
|
| |
|
| 3 Lemmas Page 267 Blumensath Davies IHT for CS | | 3 Lemmas Page 267 Blumensath Davies IHT for CS |
|
| |
|
| Lemma 1(Blumensath, Davis 2009 Iterative hard thresholding for compressed sensing), For all index sets <nowiki><math display="inline">\Gamma</math></nowiki> and all <nowiki><math display="inline">\Phi</math></nowiki> for which RIP holds with <nowiki><math display="inline">s = |\Gamma|</math></nowiki> that is <nowiki><math display="inline">s = supp(x)</math></nowiki> | | Lemma 1(Blumensath, Davis 2009 Iterative hard thresholding for compressed |
|
| |
|
| <nowiki><math display="block">\begin{split}</nowiki>
| | sensing), For all index sets Γ and all Φ for which RIP holds with s = | Γ | that is |
|
| |
|
| <nowiki> &\| \Phi_\Gamma^T\|_2 \leq \sqrt{1 + \delta_{|\Gamma|}} \| y\|_2\\</nowiki>
| | s = supp ( x ) |
|
| |
|
| &(1 - \delta_{|\Gamma|}) \| x_{\Gamma} \|_2 ^2 \leq \| \Phi_{\Gamma}^T \Phi_{\Gamma} x_{\Gamma} \|_2^2 \leq (1 + \delta_{|\Gamma|}) \| x_{\Gamma} \|_2 ^2 \\
| | 1k Φ Γ T k 2 ≤ |
|
| |
|
| and & \\
| | q |
|
| |
|
| &\| (I - \Phi_{\Gamma}^T \Phi_{\Gamma})\|_2 \leq \delta _{|\Gamma|} \| x_{\Gamma}\|_2\\
| | 1 + δ | Γ | k y k 2 |
|
| |
|
| & Suppose \Gamma \cap \Lambda = \emptyset\\
| | ( 1 − δ | Γ | )k x Γ k 22 ≤ k Φ Γ T Φ Γ x Γ k 22 ≤ ( 1 + δ | Γ | )k x Γ k 22 |
|
| |
|
| & \| \Phi_{\Gamma}^T \Phi_{\Lambda}) x_\Lambda \|_2 \leq \delta_s \| x_\Lambda \|_2
| | and |
|
| |
|
| \end{split}<nowiki></math></nowiki>
| | k( I − Φ Γ T Φ Γ )k 2 ≤ δ | Γ | k x Γ k 2 |
|
| |
|
| Lemma 2 (Needell Tropp, Prop 3.5 in CoSaMP: Iterative signal recovery from incomplete and inaccurate samples)
| | SupposeΓ ∩ Λ = ∅ |
|
| |
|
| If <nowiki><math display="inline">\Phi</math></nowiki> satisfies RIP <nowiki><math display="inline">\| \Phi x^s\|_2 \leq \sqrt{1 + \delta_s} \| x^s\|_2</math></nowiki>, <nowiki><math display="inline">\forall \ x^s: \| x^s\|_0 \leq s</math></nowiki>, Then <nowiki><math display="inline">\forall x</math></nowiki>
| | k Φ Γ T Φ Λ ) x Λ k 2 ≤ δ s k x Λ k 2 |
|
| |
|
| <nowiki><math display="block">\| \Phi x\|_2 \leq \sqrt{1 + \delta_s} \| x\|_2 + \sqrt{1 + \delta_s} \frac{\| x \|_1}{sqrt{s}}</math></nowiki>
| | Lemma 2 (Needell Tropp, Prop 3.5 in CoSaMP: Iterative signal recovery |
|
| |
|
| Lemma 3 (Needell Tropp, Prop 3.5 in CoSaMP: Iterative signal recovery from incomplete and inaccurate samples)
| | from incomplete and inaccurate √ samples) |
|
| |
|
| Let <nowiki><math display="inline">x^s</math></nowiki> be the best s-term approximation to x. Let <nowiki><math display="inline">x_r = x - x^s</math></nowiki> Let <nowiki><math display="block">y = \Phi x + e = \Phi x^s + \Phi x_r + e = \Phi x^s + \tilde{e}</math></nowiki>
| | If Φ satisfies RIP k Φx s k 2 ≤ 1 + δ s k x s k 2 , ∀ x s : k x s k 0 ≤ s, Then ∀ x |
|
| |
|
| If <nowiki><math display="inline">\Phi</math></nowiki> statisfies RIP for sparcity s, then the norm of error <nowiki><math display="inline">\tilde{e}</math></nowiki> is bounded by
| | k Φx k 2 ≤ |
|
| |
|
| <nowiki><math display="block">\| \tilde{e} \|_2 \leq \sqrt{1 + \delta_s} \| x - x^s\|_2 + \sqrt{1 + \delta_s} \frac{\| x - x^s\|_1}{\sqrt{s}} + \| e \|_2 \quad \forall x</math></nowiki>
| | p |
|
| |
|
| <nowiki>= Theory =</nowiki>
| | 1 + δ s k x k 2 + |
| | |
| | p |
| | |
| | 1 + δ s |
| | |
| | k x k 1 |
| | |
| | sqrts |
| | |
| | Lemma 3 (Needell Tropp, Prop 3.5 in CoSaMP: Iterative signal recovery |
| | |
| | from incomplete and inaccurate samples) |
| | |
| | Let x s be the best s-term approximation to x. Let x r = x − x s Let |
| | |
| | y = Φx + e = Φx s + Φx r + e = Φx s + ẽ |
| | |
| | If Φ statisfies RIP for sparcity s, then the norm of error ẽ is bounded by |
| | |
| | k ẽ k 2 ≤ |
| | |
| | p |
| | |
| | 1 + δ s k x − x s k 2 + |
| | |
| | p |
| | |
| | 1 + δ s |
| | |
| | k x − x s k 1 |
| | |
| | √ |
| | |
| | + k e k 2 |
| | |
| | s |
| | |
| | ∀ x |
| | |
| | Theory |
|
| |
|
| Gel’fend n-width | | Gel’fend n-width |
|
| |
|
| Errors <nowiki><math display="inline">E(S, \Phi, D)</math></nowiki> | | Errors E ( S, Φ, D ) |
|
| |
|
| Definition Mutual Coherence | | Definition Mutual Coherence |
|
| |
|
| <nowiki><math display="inline">Let A \in R^{M \times N}, the mutual coherence \mu_A is defined by:</math></nowiki>
| | LetA ∈ R M × N , themutualcoherenceµ A isde f inedby : |
|
| |
|
| <nowiki><math display="block">\mu_A = \underset{i \neq j} {\frac{| \langle a_i, a_j \rangle |}{ \| a_i \| \| a_j \|}}</math></nowiki>
| | µ A = |
|
| |
|
| We want a small <nowiki><math display="inline">\mu_A</math></nowiki> because it will be close ot the normal matrix, which will satisfie RIP
| | |h a i , a j i| |
|
| |
|
| <nowiki>= Numerical Example =</nowiki>
| | k a i kk a j k |
| | |
| | i 6 = j |
| | |
| | We want a small µ A because it will be close ot the normal matrix, which |
| | |
| | will satisfie RIP |
| | |
| | Numerical Example |
|
| |
|
| Basis Persuit | | Basis Persuit |
Line 105: |
Line 174: |
|
| |
|
| Solver | | Solver |
| | |
| | 2 |
| | <math>(1 - \delta_s) \| x \|_2 ^2 \leq \| \Phi x \|_2^2 \leq (1 + \delta_s) \| x \|_2 ^2</math> |
| | |
|
| |
|
| | | |
MEng Systems Engineering student
MS and BS in Statistics
Introduction
Introduction
x ∈ R N often not really sparse but approximately sparse
Φ ∈ R M × N for M � N is a Random Gaussian or Bernoulli matrix
y ∈ R M are the observed y samples
e ∈ R M noise vector k e k 2 ≤ η
s.t.
How can we reconstruct x from y = Φx + e
The goal is to reconstruct x 0 ∈ R N given y and Φ
Sensing matrix Φ must satisfy RIP i.e. Random Gaussian or Bernoulli ma-
traceries satisfies (cite)
let [ N ] = { 1, . . . , N } be an index set
[ N ] enumerates the columns of Φ and x
Φ is an undetermined systems with infinite solutions. Why l 2 norm does
not work
What is compression is sunomunus with to the sparsity.
The problem formulation is to recover sparse data x 0 ∈ R N
The support of x 0 is supp ( x 0 ) = { i ∈ [ N ] : x 0 ( i ) 6 = 0 }
we say x is k sparse when | supp ( x )| ≤ k
We are interested in the smallest supp ( x ) , i.e. min(supp ( x ) )
Restricted isometry property (RIP) Introduced by Candes, Tao
Random Gaussian and Bernoulli satisfies RIP
Let Φ ∈ R M × N satsify RIP, Let [ N ] be an index set
Before we get into RIP lets talk about RIC
Restricted Isometry Constant (RIC) is the smallest δ | s s.t. s ⊆ [ N ] that satsifies the RIP condition
For s is a restriction on x denoted by x | s x ∈ R N tos k-sparse x s.t. RIP is
satisfied the s = | Γ | i.e. s ⊆ [ N ] and Φ | s ⊆ Φ where the columns of Φ | s is
indexed by i ∈ S
�
x i , i f i ∈ S
( x | S ) i =
0 otherwise
RIP defined as
( 1 − δ s )k x k 22 ≤ k Φx k 22 ≤ ( 1 + δ s )k x k 22
3 Lemmas Page 267 Blumensath Davies IHT for CS
Lemma 1(Blumensath, Davis 2009 Iterative hard thresholding for compressed
sensing), For all index sets Γ and all Φ for which RIP holds with s = | Γ | that is
s = supp ( x )
1k Φ Γ T k 2 ≤
q
1 + δ | Γ | k y k 2
( 1 − δ | Γ | )k x Γ k 22 ≤ k Φ Γ T Φ Γ x Γ k 22 ≤ ( 1 + δ | Γ | )k x Γ k 22
and
k( I − Φ Γ T Φ Γ )k 2 ≤ δ | Γ | k x Γ k 2
SupposeΓ ∩ Λ = ∅
k Φ Γ T Φ Λ ) x Λ k 2 ≤ δ s k x Λ k 2
Lemma 2 (Needell Tropp, Prop 3.5 in CoSaMP: Iterative signal recovery
from incomplete and inaccurate √ samples)
If Φ satisfies RIP k Φx s k 2 ≤ 1 + δ s k x s k 2 , ∀ x s : k x s k 0 ≤ s, Then ∀ x
k Φx k 2 ≤
p
1 + δ s k x k 2 +
p
1 + δ s
k x k 1
sqrts
Lemma 3 (Needell Tropp, Prop 3.5 in CoSaMP: Iterative signal recovery
from incomplete and inaccurate samples)
Let x s be the best s-term approximation to x. Let x r = x − x s Let
y = Φx + e = Φx s + Φx r + e = Φx s + ẽ
If Φ statisfies RIP for sparcity s, then the norm of error ẽ is bounded by
k ẽ k 2 ≤
p
1 + δ s k x − x s k 2 +
p
1 + δ s
k x − x s k 1
√
+ k e k 2
s
∀ x
Theory
Gel’fend n-width
Errors E ( S, Φ, D )
Definition Mutual Coherence
LetA ∈ R M × N , themutualcoherenceµ A isde f inedby :
µ A =
|h a i , a j i|
k a i kk a j k
i 6 = j
We want a small µ A because it will be close ot the normal matrix, which
will satisfie RIP
Numerical Example
Basis Persuit
Iterative Hard Thresholding IHT
Solver
2