Adafactor: Difference between revisions

From Cornell University Computational Optimization Open Textbook - Optimization Wiki
Jump to navigation Jump to search
Line 22: Line 22:
<math>\alpha_t = \max(\epsilon_2, \text{RMS}(x_{t-1})) \rho_t</math>
<math>\alpha_t = \max(\epsilon_2, \text{RMS}(x_{t-1})) \rho_t</math>
* Where:
* Where:
*<math>\rho_t</math> is the relative step size.
  *<math>\rho_t</math> is the relative step size.
*<math>\epsilon_2</math> is a regularization constant.
  *<math>\epsilon_2</math> is a regularization constant.
*<math>\text{RMS}</math> is the root mean square, defined as:
  *<math>\text{RMS}</math> is the root mean square, defined as:
  <math>u_{xt} = \frac{-g_{xt}}{\sqrt{\hat{v}_{xt}}}</math>
  <math>u_{xt} = \frac{-g_{xt}}{\sqrt{\hat{v}_{xt}}}</math>
  <math>\text{RMS}(U_t) = \text{RMS}_{x \in X}(u_{xt}) = \sqrt{\text{Mean}_{x \in X}\left(\frac{(g_{xt})^2}{\hat{v}_{xt}}\right)}</math>
  <math>\text{RMS}(U_t) = \text{RMS}_{x \in X}(u_{xt}) = \sqrt{\text{Mean}_{x \in X}\left(\frac{(g_{xt})^2}{\hat{v}_{xt}}\right)}</math>


=== 3. Problem Formulation ===
=== 3. Problem Formulation ===

Revision as of 16:45, 10 December 2024

Author: Aolei Cao (ac3237), Ziyang Li (zl986), Junjia Liang (jl4439) (ChemE 6800 Fall 2024)

Stewards: Nathan Preuss, Wei-Han Chen, Tianqi Xiao, Guoqing Hu

Introduction

Problem formulation

1. Objective

Minimize the loss function , where and is the weight vector to be optimized.

2. Parameters

  • Gradient:

  • Second moment estimate:

  • Where:

is the running average of the squared gradient. is the corrected decay parameter. is a regularization constant.

  • Step size:

  • Where:
 * is the relative step size.
 * is a regularization constant.
 * is the root mean square, defined as:
 
 

3. Problem Formulation

Adafactor for Weighted Vectors

Inputs:

  • Initial point:
  • Relative step sizes: for to
  • Second moment decay: for to , with
  • Regularization constants:
  • Clipping threshold:

Algorithm:

  1. For to :
    1. Compute adaptive step size:
  
    1. Compute gradient:
  
    1. Update second moment estimate:
  
    1. Compute normalized gradient:
  
    1. Apply clipping:
  
    1. Update parameter:
  
  1. End for

Adafactor for Weighted Matrices

Inputs:

  • Initial point:
  • Relative step sizes: for to
  • Second moment decay: for to , with
  • Regularization constants:
  • Clipping threshold:

Algorithm:

  1. For to :
    1. Compute adaptive step size:
  
    1. Compute gradient:
  
    1. Update row-wise second moment:
  
    1. Update column-wise second moment:
  
    1. Update overall second moment estimate:
  
    1. Compute normalized gradient:
  
    1. Apply clipping:
  
    1. Update parameter:
  
  1. End for

4. Proposed Hyperparameters for Adafactor

  • Regularization constant 1:
  • Regularization constant 2:
  • Clipping threshold:
  • Relative step size:
  • Second moment decay:

Numerical Examples

Applications

Conclusion

Reference