|
|
Line 85: |
Line 85: |
| <math>X_0 = \begin{bmatrix} 0.7 &-0.5& 0.9\\ -1.1 & 0.8& -1.6\\1.2&-0.7& 0.4 \end{bmatrix}</math> | | <math>X_0 = \begin{bmatrix} 0.7 &-0.5& 0.9\\ -1.1 & 0.8& -1.6\\1.2&-0.7& 0.4 \end{bmatrix}</math> |
|
| |
|
| '''Gradient (<math>G_t</math>):''' | | '''Initial gradient (<math>G_t</math>):''' |
| | |
| | Gradient of the loss function with respect to X |
|
| |
|
| <math>G_t = \begin{bmatrix} 0.3&-0.2&0.4\\ -0.5&0.6&-0.1\\0.2&-0.4 &0.3 \end{bmatrix}</math> | | <math>G_t = \begin{bmatrix} 0.3&-0.2&0.4\\ -0.5&0.6&-0.1\\0.2&-0.4 &0.3 \end{bmatrix}</math> |
Line 107: |
Line 109: |
| Define the relative step size | | Define the relative step size |
|
| |
|
| <math>\rho_t = \min(10^{-2}, 1/\sqrt{1})= 10^{-2}</math> | | <math>\rho_1 = \min(10^{-2}, 1/\sqrt{1})= 10^{-2}</math> |
|
| |
|
| '''Step 1.1: Root Mean Square(RMS) calculation for <math>X_0</math>''' | | '''Step 1.1: Root Mean Square(RMS) calculation for <math>X_0</math>''' |
Line 123: |
Line 125: |
| <math>RMS(X_0) = \sqrt{\frac{6.85}{9}}\approx 0.806</math> | | <math>RMS(X_0) = \sqrt{\frac{6.85}{9}}\approx 0.806</math> |
|
| |
|
| Find the Learning Rate Scaling (αt): | | '''Step 1.2: Find the Learning Rate Scaling ('''<math>\alpha_t</math>'''):''' |
| | |
| | Learning rate formula |
| | |
| | <math>\alpha_1 = max(\epsilon_2,RMS(X_0))\cdot p_1</math> |
| | |
| | Substitute the RMS |
| | |
| | <math>\alpha_1 = max(0.001,0.806)\cdot 0.01=0.00806</math> |
| | |
| | |
| | '''<big>Step 2: Compute <math>G^{2}_t</math> (Element-wise Square of Gradient)</big>''' |
| | |
| | Square the gradient value |
| | |
| | <math>G^{2}_t = \begin{bmatrix} 0.3^2&(-0.2)^2&0.4^2\\ (-0.5)^2&0.6^2&(-0.1)^2\\0.2^2&(-0.4)^2 &0.3^2 \end{bmatrix}</math> |
| | |
| | |
| | <math>G^{2}_t = \begin{bmatrix} 0.09& 0.04&0.16\\ 0.25&0.36&0.01\\0.04&0.16&0.09\end{bmatrix}</math> |
| | |
| | |
| | '''<big>Step 3: Find the moment estimate</big>''' |
| | |
| | |
| | '''Step 3.1: Compute row moments (<math>R_t</math>)''' |
| | |
| | This equation computes the row-wise second moments ('''<math>R_t</math>''' ) as an exponential moving average of past moments ('''<math>R_{t-1}</math>''') and the current row-wise mean of squared gradients ( <small><math>G^{2}_t</math></small> ), with a balance controlled by (<math>\hat{\beta}_{2t}</math>). |
| | |
| | For <math>G^{2}_t=\mathbb{R}^{m\times n} </math> |
| | |
| | <math>R_t = \hat{\beta_{2t}} \cdot R_{t-1} + (1-\hat{\beta})\cdot (\tfrac{1}{m}\textstyle \sum_{j=1}^m \displaystyle G^{2}_t[i,j]+\epsilon_1) </math> |
| | |
| | Since <math>\hat{\beta}_{2t} = 1 - t^{-0.8}</math>, for first iteration: <math>\hat{\beta}_{21} = 0</math>. And because <math>\epsilon_1 </math> is too small, we ignore it. The update of '''<math>R_1</math>''' is: |
| | |
| | <math>R_{1} = \tfrac{1}{m}\textstyle \sum_{j=1}^m \displaystyle G^{2}_t[i,j] </math> |
| | |
| | Row-wise mean ('''<math>R_t</math>'''): |
| | |
| | <math>R_1 = \begin{bmatrix} \tfrac{0.09+0.04+0.16}{3} \\ \tfrac{0.25+0.36+0.01}{3}\\\tfrac{0.04+0.16+0.09}{3} \end{bmatrix} = \begin{bmatrix} 0.0967\\ 0.2067\\0.0967\end{bmatrix} </math> |
| | |
| | |
| | '''Step 3.2: Compute column moments (<math>C_t</math>)''' |
| | |
| | The prcoess is same as row moments |
| | |
| | <math>C_t = \hat{\beta}\cdot C_{{t-1}} + (1-\hat{\beta})\cdot (\tfrac{1}{n}\textstyle \sum_{j=1}^n \displaystyle G^{2}_t[i,j]+\epsilon_1) </math> |
| | |
| | Column Moments ('''<math>C_t</math>'''): |
| | |
| | <math>C_1 = \begin{bmatrix} \tfrac{0.09+025+0.04}{3} \\ \tfrac{0.04+0.36+0.16}{3}\\\tfrac{0.16+0.01+0.09}{3} \end{bmatrix} = \begin{bmatrix} 0.1267\\ 0.1867\\0.0867\end{bmatrix} </math> |
| | |
| | |
| | '''Step 3.3: Second Moment Estimate ('''<math>V_t</math>''')''' |
| | |
| | The Second Moment Estimate is calculated as the outer product of the row moments ('''<math>R_t</math>''') and column moments ('''<math>C_t</math>'''). |
| | |
| | <math>V_t = R_t \otimes C_t</math> |
| | |
| | <math>V_t = \begin{bmatrix} 0.0967\\0.2067\\0.0967 \end{bmatrix} \otimes \begin{bmatrix} 0.1267&0.1867&0.0867\\ \end{bmatrix} </math> |
| | |
| | |
| | <math>V_t = \begin{bmatrix} 0.0122&0.0180&0.0084\\ 0.0262&0.0386&0.0179\\ 0.0122&0.0180&0.0084\end{bmatrix} </math> |
| | |
| | |
| | '''<big>Step 4: Update the vector (<math>U_t </math>)</big>''' |
| | |
| | |
| | '''step 4.1: Find the vector value of <math>U_t </math>''' |
| | |
| | Formula of '''<small><math>U_t </math></small>''' |
| | |
| | <math>U_t = \frac{G_t}{\sqrt{V_t+\epsilon_1}} </math> |
| | |
| | |
| | Substitute '''<small><math>C_t</math></small>''' and <small><math>V_t</math></small> |
| | |
| | <math>U_1 = \frac{\begin{bmatrix}0.3&-0.2&0.4 \\ -0.5&0.6&-0.1\\0.2&-0.4&0.3 \end{bmatrix}}{\sqrt{\begin{bmatrix} 0.0122&0.0180&0.0084\\ 0.0262&0.0386&0.0179\\0.0122&0.0180&0.0084 \end{bmatrix}}} </math> |
| | |
| | |
| | <math>U_1 = \begin{bmatrix} 2.711&-1.489&4.370\\-3.090&3.055&-0.747\\1.807&-2.978&3.278 \end{bmatrix} </math> |
| | |
| | |
| | '''step 4.2: Clipped Update Vector <math>\hat{U_t} </math>''' |
| | |
| | Formula of '''<small><math>\hat{U_t} </math></small>''' |
| | |
| | '''<small><math>\hat{U_t} = \frac{U_t}{max(1,\tfrac{RMS(U_t)}{d}) } </math></small>''' |
| | |
| | |
| | Calculate RMS of '''<math>U_t </math>''' |
| | |
| | '''<small><math>RMS(U_t) = \sqrt{\tfrac{1}{9} \sum_{i=1}^9 U_t[i]^2} \approx 3.303 </math></small>''' |
| | |
| | |
| | Since RMS('''<math>U_t </math>''')>d, scale '''<math>U_t </math>''' by <math>\tfrac{1}{3.303} </math> |
| | |
| | '''<math>\hat{U_t} = \begin{bmatrix} 0.965&-0.53&1.556 \\-1.1&1.088&-0.266\\0.664&-1.06&1.167 \end{bmatrix} </math>''' |
| | |
| | |
| | |
| | '''<big>Step 4: Weight Update (</big>'''<math>X_1 </math>'''<big>)</big>''' |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
|
| |
|
| == Applications == | | == Applications == |
| == Conclusion == | | == Conclusion == |
| == Reference == | | == Reference == |
Author: Aolei Cao (ac3237), Ziyang Li (zl986), Junjia Liang (jl4439) (ChemE 6800 Fall 2024)
Stewards: Nathan Preuss, Wei-Han Chen, Tianqi Xiao, Guoqing Hu
Introduction
Problem formulation
1. Objective
Minimize the loss function , where and is the weight vector to be optimized.
2. Parameters
- Where:
- is the running average of the squared gradient.
- is the corrected decay parameter.
- is a regularization constant.
- Where:
- is the relative step size.
- is a regularization constant.
- is the root mean square, defined as:
3. Algorithms
Adafactor for Weighted Vectors
Inputs:
- Initial point:
- Relative step sizes: for to
- Second moment decay: for to , with
- Regularization constants:
- Clipping threshold:
Algorithm:
- For to :
- Compute adaptive step size:
- Compute gradient:
- Update second moment estimate:
- Compute normalized gradient:
- Apply clipping:
- Update parameter:
- End for
Adafactor for Weighted Matrices
Inputs:
- Initial point:
- Relative step sizes: for to
- Second moment decay: for to , with
- Regularization constants:
- Clipping threshold:
Algorithm:
- For to :
- Compute adaptive step size:
- Compute gradient:
- Update row-wise second moment:
- Update column-wise second moment:
- Update overall second moment estimate:
- Compute normalized gradient:
- Apply clipping:
- Update parameter:
- End for
4. Proposed Hyperparameters for Adafactor
- Regularization constant 1:
- Regularization constant 2:
- Clipping threshold:
- Relative step size:
- Second moment decay:
Numerical Examples
Step-by-step instructions for determining the result of the first iteration.
Problem setup
Initial weights ():
Initial gradient ():
Gradient of the loss function with respect to X
Hyperparameters setup
(Minimum learning rate scaling factor))
(Regularization constant)
(Clipping threshold)
(Relative step size)
(Second moment decay)
Step 1: Learning Rate Scaling
Define the relative step size
Step 1.1: Root Mean Square(RMS) calculation for
Root Mean Square(RMS) calculation for
RMS formula
Substitute the initial weights
Step 1.2: Find the Learning Rate Scaling ():
Learning rate formula
Substitute the RMS
Step 2: Compute (Element-wise Square of Gradient)
Square the gradient value
Step 3: Find the moment estimate
Step 3.1: Compute row moments ()
This equation computes the row-wise second moments ( ) as an exponential moving average of past moments () and the current row-wise mean of squared gradients ( ), with a balance controlled by ().
For
Since , for first iteration: . And because is too small, we ignore it. The update of is:
Row-wise mean ():
Step 3.2: Compute column moments ()
The prcoess is same as row moments
Column Moments ():
Step 3.3: Second Moment Estimate ()
The Second Moment Estimate is calculated as the outer product of the row moments () and column moments ().
Step 4: Update the vector ()
step 4.1: Find the vector value of
Formula of
Substitute and
step 4.2: Clipped Update Vector
Formula of
Calculate RMS of
Since RMS()>d, scale by
Step 4: Weight Update ()
Applications
Conclusion
Reference