Adafactor: Difference between revisions

From Cornell University Computational Optimization Open Textbook - Optimization Wiki
Jump to navigation Jump to search
Line 90: Line 90:


<math>G_t = \begin{bmatrix} 0.3&-0.2&0.4\\ -0.5&0.6&-0.1\\0.2&-0.4 &0.3 \end{bmatrix}</math>
<math>G_t = \begin{bmatrix} 0.3&-0.2&0.4\\ -0.5&0.6&-0.1\\0.2&-0.4 &0.3 \end{bmatrix}</math>


'''<big>Hyperparameters setup</big>'''
'''<big>Hyperparameters setup</big>'''
Line 104: Line 102:


<math>\hat{\beta}_{2t} = 1 - t^{-0.8}</math> (Second moment decay)
<math>\hat{\beta}_{2t} = 1 - t^{-0.8}</math> (Second moment decay)


'''<big>Step 1:  Learning Rate Scaling</big>'''
'''<big>Step 1:  Learning Rate Scaling</big>'''
Line 136: Line 132:


<math>\alpha_1 = max(0.001,0.806)\cdot 0.01=0.00806</math>
<math>\alpha_1 = max(0.001,0.806)\cdot 0.01=0.00806</math>


'''<big>Step 2: Compute <math>G^{2}_t</math>​ (Element-wise Square of Gradient)</big>'''
'''<big>Step 2: Compute <math>G^{2}_t</math>​ (Element-wise Square of Gradient)</big>'''


Square the gradient value
Compute the squared value of each element in the gradient matrix '''<math>G_t</math>'''.


<math>G^{2}_t = \begin{bmatrix} 0.3^2&(-0.2)^2&0.4^2\\ (-0.5)^2&0.6^2&(-0.1)^2\\0.2^2&(-0.4)^2 &0.3^2 \end{bmatrix}</math>
<math>G^{2}_t = \begin{bmatrix} 0.3^2&(-0.2)^2&0.4^2\\ (-0.5)^2&0.6^2&(-0.1)^2\\0.2^2&(-0.4)^2 &0.3^2 \end{bmatrix}</math>
Line 153: Line 147:
'''<big>Step 3: Find the moment estimate</big>'''
'''<big>Step 3: Find the moment estimate</big>'''


 
Compute the exponential moving average of squared gradients to capture the variance or scale of gradients.


'''Step 3.1: Compute row moments (<math>R_t</math>)'''
'''Step 3.1: Compute row moments (<math>R_t</math>)'''
Line 163: Line 157:
<math>R_t = \hat{\beta_{2t}} \cdot R_{t-1} + (1-\hat{\beta})\cdot (\tfrac{1}{m}\textstyle \sum_{j=1}^m \displaystyle G^{2}_t[i,j]+\epsilon_1) </math>
<math>R_t = \hat{\beta_{2t}} \cdot R_{t-1} + (1-\hat{\beta})\cdot (\tfrac{1}{m}\textstyle \sum_{j=1}^m \displaystyle G^{2}_t[i,j]+\epsilon_1) </math>


Since <math>\hat{\beta}_{2t} = 1 - t^{-0.8}</math>, for first iteration: <math>\hat{\beta}_{21} = 0</math>. And because <math>\epsilon_1 </math> is too small, we ignore it. The update of '''<math>R_1</math>''' is:
Since <math>\hat{\beta}_{2t} = 1 - t^{-0.8}</math>, for first iteration: <math>\hat{\beta}_{21} = 0</math>. And because <math>\epsilon_1 </math> is too small, we can ignore it. The update of '''<math>R_t</math>''' is:


<math>R_{1} = \tfrac{1}{m}\textstyle \sum_{j=1}^m \displaystyle G^{2}_t[i,j] </math>
<math>R_{1} = \tfrac{1}{m}\textstyle \sum_{j=1}^m \displaystyle G^{2}_t[i,j] </math>
Line 189: Line 183:
The Second Moment Estimate is calculated as the outer product of the row moments ('''<math>R_t</math>'''​) and column moments ('''<math>C_t</math>'''​).
The Second Moment Estimate is calculated as the outer product of the row moments ('''<math>R_t</math>'''​) and column moments ('''<math>C_t</math>'''​).


<math>V_t = R_t \otimes C_t</math>
<math>\hat{V}_t = R_t \otimes C_t</math>
 
<math>\hat{V}_1  = \begin{bmatrix} 0.0967\\0.2067\\0.0967 \end{bmatrix} \otimes    \begin{bmatrix} 0.1267&0.1867&0.0867\\ \end{bmatrix} </math>


<math>V_t = \begin{bmatrix} 0.0967\\0.2067\\0.0967 \end{bmatrix} \otimes    \begin{bmatrix} 0.1267&0.1867&0.0867\\ \end{bmatrix} </math>




<math>V_t =  \begin{bmatrix} 0.0122&0.0180&0.0084\\ 0.0262&0.0386&0.0179\\ 0.0122&0.0180&0.0084\end{bmatrix} </math>
<math>\hat{V}_1      =  \begin{bmatrix} 0.0122&0.0180&0.0084\\ 0.0262&0.0386&0.0179\\ 0.0122&0.0180&0.0084\end{bmatrix} </math>




Line 228: Line 223:




Calculate RMS of '''<math>U_t </math>'''
Compute RMS of '''<math>U_t </math>'''


'''<small><math>RMS(U_t) = \sqrt{\tfrac{1}{9}  \sum_{i=1}^9 U_t[i]^2}  \approx 3.303 </math></small>'''
'''<small><math>RMS(U_t) = \sqrt{\tfrac{1}{9}  \sum_{i=1}^9 U_t[i]^2}  \approx 3.303 </math></small>'''
Line 241: Line 236:


'''<big>Step 4: Weight Update (</big>'''<math>X_1 </math>'''<big>)</big>'''
'''<big>Step 4: Weight Update (</big>'''<math>X_1 </math>'''<big>)</big>'''
<math>X_1 = X_0 - \alpha \cdot      \hat{U_t}</math>
The result for first iteration
<math>X_1 = \begin{bmatrix} 0.7 &-0.5& 0.9\\ -1.1 & 0.8& -1.6\\1.2&-0.7& 0.4 \end{bmatrix}  - 0.00806 \cdot      \begin{bmatrix} 0.965&-0.53&1.556 \\-1.1&1.088&-0.266\\0.664&-1.06&1.167 \end{bmatrix}      </math>
<math>X_1 =  \begin{bmatrix} 0.692&-0.496&0.887 \\-1.091&0.791&-0.596\\ 1.195&-0.691&0.391\end{bmatrix}      </math>





Revision as of 16:23, 11 December 2024

Author: Aolei Cao (ac3237), Ziyang Li (zl986), Junjia Liang (jl4439) (ChemE 6800 Fall 2024)

Stewards: Nathan Preuss, Wei-Han Chen, Tianqi Xiao, Guoqing Hu

Introduction

Problem formulation

1. Objective

Minimize the loss function , where and is the weight vector to be optimized.

2. Parameters

  • Gradient:

  • Second moment estimate:

  • Where:
    • is the running average of the squared gradient.
    • is the corrected decay parameter.
    • is a regularization constant.
  • Step size:

  • Where:
    • is the relative step size.
    • is a regularization constant.
    • is the root mean square, defined as:

3. Algorithms

Adafactor for Weighted Vectors

Inputs:

  • Initial point:
  • Relative step sizes: for to
  • Second moment decay: for to , with
  • Regularization constants:
  • Clipping threshold:

Algorithm:

  • For to :
    • Compute adaptive step size:
    • Compute gradient:
    • Update second moment estimate:
    • Compute normalized gradient:
    • Apply clipping:
    • Update parameter:
  • End for

Adafactor for Weighted Matrices

Inputs:

  • Initial point:
  • Relative step sizes: for to
  • Second moment decay: for to , with
  • Regularization constants:
  • Clipping threshold:

Algorithm:

  • For to :
    • Compute adaptive step size:
    • Compute gradient:
    • Update row-wise second moment:
    • Update column-wise second moment:
    • Update overall second moment estimate:
    • Compute normalized gradient:
    • Apply clipping:
    • Update parameter:
  • End for

4. Proposed Hyperparameters for Adafactor

  • Regularization constant 1:
  • Regularization constant 2:
  • Clipping threshold:
  • Relative step size:
  • Second moment decay:

Numerical Examples

Step-by-step instructions for determining the result of the first iteration.

Problem setup

Initial weights ():

Initial gradient (​):

Gradient of the loss function with respect to X

Hyperparameters setup

(Minimum learning rate scaling factor))

(Regularization constant)

(Clipping threshold)

(Relative step size)

(Second moment decay)

Step 1: Learning Rate Scaling

Define the relative step size

Step 1.1: Root Mean Square(RMS) calculation for

Root Mean Square(RMS) calculation for

RMS formula

Substitute the initial weights

Step 1.2: Find the Learning Rate Scaling ():

Learning rate formula

Substitute the RMS

Step 2: Compute ​ (Element-wise Square of Gradient)

Compute the squared value of each element in the gradient matrix .



Step 3: Find the moment estimate

Compute the exponential moving average of squared gradients to capture the variance or scale of gradients.

Step 3.1: Compute row moments ()

This equation computes the row-wise second moments ( ​) as an exponential moving average of past moments () and the current row-wise mean of squared gradients ( ​ ), with a balance controlled by ().

For

Since , for first iteration: . And because is too small, we can ignore it. The update of is:

Row-wise mean ():


Step 3.2: Compute column moments ()

The process is same as row moments

Column-wise mean ():


Step 3.3: Second Moment Estimate ()

The Second Moment Estimate is calculated as the outer product of the row moments (​) and column moments (​).



Step 4: Update the vector ()


step 4.1: Find the vector value of

Formula of


Substitute and



step 4.2: Clipped Update Vector

Formula of


Compute RMS of


Since RMS(​)>d, scale ​ by


Step 4: Weight Update ()


The result for first iteration





Applications

Conclusion

Reference