Adafactor: Difference between revisions

From Cornell University Computational Optimization Open Textbook - Optimization Wiki
Jump to navigation Jump to search
Line 155: Line 155:
For <math>G^{2}_t=\mathbb{R}^{m\times n} </math>
For <math>G^{2}_t=\mathbb{R}^{m\times n} </math>


<math>R_t = \hat{\beta_{2t}} \cdot R_{t-1} + (1-\hat{\beta})\cdot (\tfrac{1}{m}\textstyle \sum_{j=1}^m \displaystyle G^{2}_t[i,j]+\epsilon_1) </math>
<math>R_t = \hat{\beta_{2t}} \cdot R_{t-1} + (1-\hat{\beta})\cdot (\tfrac{1}{m}\sum_{j=1}^m G^{2}_t[i,j]+\epsilon_1) </math>


Since <math>\hat{\beta}_{2t} = 1 - t^{-0.8}</math>, for first iteration: <math>\hat{\beta}_{21} = 0</math>. And because <math>\epsilon_1 </math> is too small, we can ignore it. The update of '''<math>R_t</math>''' is:
Since <math>\hat{\beta}_{2t} = 1 - t^{-0.8}</math>, for first iteration: <math>\hat{\beta}_{21} = 0</math>. And because <math>\epsilon_1 </math> is too small, we can ignore it. The update of '''<math>R_t</math>''' is:
Line 171: Line 171:
The process is same as row moments
The process is same as row moments


<math>C_t = \hat{\beta}\cdot C_{{t-1}} + (1-\hat{\beta})\cdot (\tfrac{1}{n}\textstyle \sum_{j=1}^n \displaystyle G^{2}_t[i,j]+\epsilon_1) </math>
<math>C_t = \hat{\beta}\cdot C_{{t-1}} + (1-\hat{\beta})\cdot (\tfrac{1}{n}\sum_{j=1}^n G^{2}_t[i,j]+\epsilon_1) </math>


Column-wise mean (<math>C_t</math>):
Column-wise mean (<math>C_t</math>):
Line 179: Line 179:




'''Step 3.3: Second Moment Estimate ('''<math>V_t</math>​''')'''
'''Step 3.3: Second Moment Estimate ('''<math>\hat{V_t}</math>​''')'''


The Second Moment Estimate is calculated as the outer product of the row moments ('''<math>R_t</math>'''​) and column moments ('''<math>C_t</math>'''​).
The Second Moment Estimate is calculated as the outer product of the row moments ('''<math>R_t</math>'''​) and column moments ('''<math>C_t</math>'''​).
Line 195: Line 195:
'''<big>Step 4: Update the vector (<math>U_t </math>)</big>'''
'''<big>Step 4: Update the vector (<math>U_t </math>)</big>'''


 
Computed by scaling the gradient matrix '''<math>G_t</math>'''​ element-wise with the inverse square root of the second moment estimate (<math>\hat{V_t}</math>​)


'''step 4.1: Find the vector value of <math>U_t </math>'''
'''step 4.1: Find the vector value of <math>U_t </math>'''
Line 201: Line 201:
Formula of '''<small><math>U_t </math></small>'''
Formula of '''<small><math>U_t </math></small>'''


<math>U_t = \frac{G_t}{\sqrt{V_t+\epsilon_1}} </math>
<math>U_t = \frac{G_t}{\sqrt{\hat{V_t}+\epsilon_1}} </math>
 
 


Substitute '''<small><math>C_t</math></small>''' and <small><math>V_t</math></small>
Substitute '''<small><math>C_t</math></small>''' and <small><math>V_t</math></small>
Line 225: Line 223:
Compute RMS of '''<math>U_t </math>'''
Compute RMS of '''<math>U_t </math>'''


'''<small><math>RMS(U_t) = \sqrt{\tfrac{1}{9}  \sum_{i=1}^9 U_t[i]^2}  \approx 3.303 </math></small>'''
'''<small><math>RMS(U_1)   = \sqrt{\tfrac{1}{9}  \sum_{i=1}^9 U_t[i]^2}  \approx 3.303 </math></small>'''
 
 


Since RMS('''<math>U_t </math>'''​)>d, scale '''<math>U_t </math>'''​ by <math>\tfrac{1}{3.303} </math>
Since RMS('''<math>U_t </math>'''​)>d, scale '''<math>U_t </math>'''​ by <math>\tfrac{1}{3.303} </math>
Line 236: Line 232:


'''<big>Step 4: Weight Update (</big>'''<math>X_1 </math>'''<big>)</big>'''
'''<big>Step 4: Weight Update (</big>'''<math>X_1 </math>'''<big>)</big>'''





Revision as of 16:44, 11 December 2024

Author: Aolei Cao (ac3237), Ziyang Li (zl986), Junjia Liang (jl4439) (ChemE 6800 Fall 2024)

Stewards: Nathan Preuss, Wei-Han Chen, Tianqi Xiao, Guoqing Hu

Introduction

Problem formulation

1. Objective

Minimize the loss function , where and is the weight vector to be optimized.

2. Parameters

  • Gradient:

  • Second moment estimate:

  • Where:
    • is the running average of the squared gradient.
    • is the corrected decay parameter.
    • is a regularization constant.
  • Step size:

  • Where:
    • is the relative step size.
    • is a regularization constant.
    • is the root mean square, defined as:

3. Algorithms

Adafactor for Weighted Vectors

Inputs:

  • Initial point:
  • Relative step sizes: for to
  • Second moment decay: for to , with
  • Regularization constants:
  • Clipping threshold:

Algorithm:

  • For to :
    • Compute adaptive step size:
    • Compute gradient:
    • Update second moment estimate:
    • Compute normalized gradient:
    • Apply clipping:
    • Update parameter:
  • End for

Adafactor for Weighted Matrices

Inputs:

  • Initial point:
  • Relative step sizes: for to
  • Second moment decay: for to , with
  • Regularization constants:
  • Clipping threshold:

Algorithm:

  • For to :
    • Compute adaptive step size:
    • Compute gradient:
    • Update row-wise second moment:
    • Update column-wise second moment:
    • Update overall second moment estimate:
    • Compute normalized gradient:
    • Apply clipping:
    • Update parameter:
  • End for

4. Proposed Hyperparameters for Adafactor

  • Regularization constant 1:
  • Regularization constant 2:
  • Clipping threshold:
  • Relative step size:
  • Second moment decay:

Numerical Examples

Step-by-step instructions for determining the result of the first iteration.

Problem setup

Initial weights ():

Initial gradient (​):

Gradient of the loss function with respect to X

Hyperparameters setup

(Minimum learning rate scaling factor))

(Regularization constant)

(Clipping threshold)

(Relative step size)

(Second moment decay)

Step 1: Learning Rate Scaling

Define the relative step size

Step 1.1: Root Mean Square(RMS) calculation for

Root Mean Square(RMS) calculation for

RMS formula

Substitute the initial weights

Step 1.2: Find the Learning Rate Scaling ():

Learning rate formula

Substitute the RMS

Step 2: Compute ​ (Element-wise Square of Gradient)

Compute the squared value of each element in the gradient matrix .



Step 3: Find the moment estimate

Compute the exponential moving average of squared gradients to capture the variance or scale of gradients.

Step 3.1: Compute row moments ()

This equation computes the row-wise second moments ( ​) as an exponential moving average of past moments () and the current row-wise mean of squared gradients ( ​ ), with a balance controlled by ().

For

Since , for first iteration: . And because is too small, we can ignore it. The update of is:

Row-wise mean ():


Step 3.2: Compute column moments ()

The process is same as row moments

Column-wise mean ():


Step 3.3: Second Moment Estimate ()

The Second Moment Estimate is calculated as the outer product of the row moments (​) and column moments (​).



Step 4: Update the vector ()

Computed by scaling the gradient matrix ​ element-wise with the inverse square root of the second moment estimate (​)

step 4.1: Find the vector value of

Formula of

Substitute and



step 4.2: Clipped Update Vector

Formula of


Compute RMS of

Since RMS(​)>d, scale ​ by


Step 4: Weight Update ()


The result for first iteration





Applications

Conclusion

Reference