|
|
Line 155: |
Line 155: |
| For <math>G^{2}_t=\mathbb{R}^{m\times n} </math> | | For <math>G^{2}_t=\mathbb{R}^{m\times n} </math> |
|
| |
|
| <math>R_t = \hat{\beta_{2t}} \cdot R_{t-1} + (1-\hat{\beta})\cdot (\tfrac{1}{m}\textstyle \sum_{j=1}^m \displaystyle G^{2}_t[i,j]+\epsilon_1) </math> | | <math>R_t = \hat{\beta_{2t}} \cdot R_{t-1} + (1-\hat{\beta})\cdot (\tfrac{1}{m}\sum_{j=1}^m G^{2}_t[i,j]+\epsilon_1) </math> |
|
| |
|
| Since <math>\hat{\beta}_{2t} = 1 - t^{-0.8}</math>, for first iteration: <math>\hat{\beta}_{21} = 0</math>. And because <math>\epsilon_1 </math> is too small, we can ignore it. The update of '''<math>R_t</math>''' is: | | Since <math>\hat{\beta}_{2t} = 1 - t^{-0.8}</math>, for first iteration: <math>\hat{\beta}_{21} = 0</math>. And because <math>\epsilon_1 </math> is too small, we can ignore it. The update of '''<math>R_t</math>''' is: |
Line 171: |
Line 171: |
| The process is same as row moments | | The process is same as row moments |
|
| |
|
| <math>C_t = \hat{\beta}\cdot C_{{t-1}} + (1-\hat{\beta})\cdot (\tfrac{1}{n}\textstyle \sum_{j=1}^n \displaystyle G^{2}_t[i,j]+\epsilon_1) </math> | | <math>C_t = \hat{\beta}\cdot C_{{t-1}} + (1-\hat{\beta})\cdot (\tfrac{1}{n}\sum_{j=1}^n G^{2}_t[i,j]+\epsilon_1) </math> |
|
| |
|
| Column-wise mean (<math>C_t</math>): | | Column-wise mean (<math>C_t</math>): |
Line 179: |
Line 179: |
|
| |
|
|
| |
|
| '''Step 3.3: Second Moment Estimate ('''<math>V_t</math>''')''' | | '''Step 3.3: Second Moment Estimate ('''<math>\hat{V_t}</math>''')''' |
|
| |
|
| The Second Moment Estimate is calculated as the outer product of the row moments ('''<math>R_t</math>''') and column moments ('''<math>C_t</math>'''). | | The Second Moment Estimate is calculated as the outer product of the row moments ('''<math>R_t</math>''') and column moments ('''<math>C_t</math>'''). |
Line 195: |
Line 195: |
| '''<big>Step 4: Update the vector (<math>U_t </math>)</big>''' | | '''<big>Step 4: Update the vector (<math>U_t </math>)</big>''' |
|
| |
|
| | | Computed by scaling the gradient matrix '''<math>G_t</math>''' element-wise with the inverse square root of the second moment estimate (<math>\hat{V_t}</math>) |
|
| |
|
| '''step 4.1: Find the vector value of <math>U_t </math>''' | | '''step 4.1: Find the vector value of <math>U_t </math>''' |
Line 201: |
Line 201: |
| Formula of '''<small><math>U_t </math></small>''' | | Formula of '''<small><math>U_t </math></small>''' |
|
| |
|
| <math>U_t = \frac{G_t}{\sqrt{V_t+\epsilon_1}} </math> | | <math>U_t = \frac{G_t}{\sqrt{\hat{V_t}+\epsilon_1}} </math> |
| | |
| | |
|
| |
|
| Substitute '''<small><math>C_t</math></small>''' and <small><math>V_t</math></small> | | Substitute '''<small><math>C_t</math></small>''' and <small><math>V_t</math></small> |
Line 225: |
Line 223: |
| Compute RMS of '''<math>U_t </math>''' | | Compute RMS of '''<math>U_t </math>''' |
|
| |
|
| '''<small><math>RMS(U_t) = \sqrt{\tfrac{1}{9} \sum_{i=1}^9 U_t[i]^2} \approx 3.303 </math></small>''' | | '''<small><math>RMS(U_1) = \sqrt{\tfrac{1}{9} \sum_{i=1}^9 U_t[i]^2} \approx 3.303 </math></small>''' |
| | |
| | |
|
| |
|
| Since RMS('''<math>U_t </math>''')>d, scale '''<math>U_t </math>''' by <math>\tfrac{1}{3.303} </math> | | Since RMS('''<math>U_t </math>''')>d, scale '''<math>U_t </math>''' by <math>\tfrac{1}{3.303} </math> |
Line 236: |
Line 232: |
|
| |
|
| '''<big>Step 4: Weight Update (</big>'''<math>X_1 </math>'''<big>)</big>''' | | '''<big>Step 4: Weight Update (</big>'''<math>X_1 </math>'''<big>)</big>''' |
| | |
|
| |
|
|
| |
|
Author: Aolei Cao (ac3237), Ziyang Li (zl986), Junjia Liang (jl4439) (ChemE 6800 Fall 2024)
Stewards: Nathan Preuss, Wei-Han Chen, Tianqi Xiao, Guoqing Hu
Introduction
Problem formulation
1. Objective
Minimize the loss function , where and is the weight vector to be optimized.
2. Parameters
- Where:
- is the running average of the squared gradient.
- is the corrected decay parameter.
- is a regularization constant.
- Where:
- is the relative step size.
- is a regularization constant.
- is the root mean square, defined as:
3. Algorithms
Adafactor for Weighted Vectors
Inputs:
- Initial point:
- Relative step sizes: for to
- Second moment decay: for to , with
- Regularization constants:
- Clipping threshold:
Algorithm:
- For to :
- Compute adaptive step size:
- Compute gradient:
- Update second moment estimate:
- Compute normalized gradient:
- Apply clipping:
- Update parameter:
- End for
Adafactor for Weighted Matrices
Inputs:
- Initial point:
- Relative step sizes: for to
- Second moment decay: for to , with
- Regularization constants:
- Clipping threshold:
Algorithm:
- For to :
- Compute adaptive step size:
- Compute gradient:
- Update row-wise second moment:
- Update column-wise second moment:
- Update overall second moment estimate:
- Compute normalized gradient:
- Apply clipping:
- Update parameter:
- End for
4. Proposed Hyperparameters for Adafactor
- Regularization constant 1:
- Regularization constant 2:
- Clipping threshold:
- Relative step size:
- Second moment decay:
Numerical Examples
Step-by-step instructions for determining the result of the first iteration.
Problem setup
Initial weights ():
Initial gradient ():
Gradient of the loss function with respect to X
Hyperparameters setup
(Minimum learning rate scaling factor))
(Regularization constant)
(Clipping threshold)
(Relative step size)
(Second moment decay)
Step 1: Learning Rate Scaling
Define the relative step size
Step 1.1: Root Mean Square(RMS) calculation for
Root Mean Square(RMS) calculation for
RMS formula
Substitute the initial weights
Step 1.2: Find the Learning Rate Scaling ():
Learning rate formula
Substitute the RMS
Step 2: Compute (Element-wise Square of Gradient)
Compute the squared value of each element in the gradient matrix .
Step 3: Find the moment estimate
Compute the exponential moving average of squared gradients to capture the variance or scale of gradients.
Step 3.1: Compute row moments ()
This equation computes the row-wise second moments ( ) as an exponential moving average of past moments () and the current row-wise mean of squared gradients ( ), with a balance controlled by ().
For
Since , for first iteration: . And because is too small, we can ignore it. The update of is:
Row-wise mean ():
Step 3.2: Compute column moments ()
The process is same as row moments
Column-wise mean ():
Step 3.3: Second Moment Estimate ()
The Second Moment Estimate is calculated as the outer product of the row moments () and column moments ().
Step 4: Update the vector ()
Computed by scaling the gradient matrix element-wise with the inverse square root of the second moment estimate ()
step 4.1: Find the vector value of
Formula of
Substitute and
step 4.2: Clipped Update Vector
Formula of
Compute RMS of
Since RMS()>d, scale by
Step 4: Weight Update ()
The result for first iteration
Applications
Conclusion
Reference