|
|
| Line 132: |
Line 132: |
|
| |
|
| <math>\alpha_1 = max(0.001,0.806)\cdot 0.01=0.00806</math> | | <math>\alpha_1 = max(0.001,0.806)\cdot 0.01=0.00806</math> |
| | |
|
| |
|
| '''<big>Step 2: Compute <math>G^{2}_t</math> (Element-wise Square of Gradient)</big>''' | | '''<big>Step 2: Compute <math>G^{2}_t</math> (Element-wise Square of Gradient)</big>''' |
| Line 138: |
Line 139: |
|
| |
|
| <math>G^{2}_1 = \begin{bmatrix} 0.3^2&(-0.2)^2&0.4^2\\ (-0.5)^2&0.6^2&(-0.1)^2\\0.2^2&(-0.4)^2 &0.3^2 \end{bmatrix}</math> | | <math>G^{2}_1 = \begin{bmatrix} 0.3^2&(-0.2)^2&0.4^2\\ (-0.5)^2&0.6^2&(-0.1)^2\\0.2^2&(-0.4)^2 &0.3^2 \end{bmatrix}</math> |
| | |
|
| |
|
|
| |
|
| Line 172: |
Line 174: |
|
| |
|
| <math>C_1 = \begin{bmatrix} \tfrac{0.09+025+0.04}{3} \\ \tfrac{0.04+0.36+0.16}{3}\\\tfrac{0.16+0.01+0.09}{3} \end{bmatrix} = \begin{bmatrix} 0.1267\\ 0.1867\\0.0867\end{bmatrix} </math> | | <math>C_1 = \begin{bmatrix} \tfrac{0.09+025+0.04}{3} \\ \tfrac{0.04+0.36+0.16}{3}\\\tfrac{0.16+0.01+0.09}{3} \end{bmatrix} = \begin{bmatrix} 0.1267\\ 0.1867\\0.0867\end{bmatrix} </math> |
|
| |
|
| |
|
| |
|
| '''Step 3.3: Second Moment Estimate ('''<math>\hat{V_t}</math>''')''' | | '''Step 3.3: Second Moment Estimate ('''<math>\hat{V_t}</math>''')''' |
| Line 186: |
Line 186: |
|
| |
|
| <math>\hat{V}_1 = \begin{bmatrix} 0.0122&0.0180&0.0084\\ 0.0262&0.0386&0.0179\\ 0.0122&0.0180&0.0084\end{bmatrix} </math> | | <math>\hat{V}_1 = \begin{bmatrix} 0.0122&0.0180&0.0084\\ 0.0262&0.0386&0.0179\\ 0.0122&0.0180&0.0084\end{bmatrix} </math> |
|
| |
|
| |
|
| |
|
| '''<big>Step 4: Update the vector (<math>U_t </math>)</big>''' | | '''<big>Step 4: Update the vector (<math>U_t </math>)</big>''' |
| Line 206: |
Line 204: |
|
| |
|
| <math>U_1 = \begin{bmatrix} 2.711&-1.489&4.370\\-3.090&3.055&-0.747\\1.807&-2.978&3.278 \end{bmatrix} </math> | | <math>U_1 = \begin{bmatrix} 2.711&-1.489&4.370\\-3.090&3.055&-0.747\\1.807&-2.978&3.278 \end{bmatrix} </math> |
|
| |
|
| |
|
| |
|
| '''step 4.2: Clipped Update Vector <math>\hat{U_t} </math>''' | | '''step 4.2: Clipped Update Vector <math>\hat{U_t} </math>''' |
| Line 224: |
Line 220: |
|
| |
|
| '''<math>\hat{U_1} = \begin{bmatrix} 0.965&-0.53&1.556 \\-1.1&1.088&-0.266\\0.664&-1.06&1.167 \end{bmatrix} </math>''' | | '''<math>\hat{U_1} = \begin{bmatrix} 0.965&-0.53&1.556 \\-1.1&1.088&-0.266\\0.664&-1.06&1.167 \end{bmatrix} </math>''' |
| | |
|
| |
|
| '''<big>Step 5: Weight Update (</big>'''<math>X_1 </math>'''<big>)</big>''' | | '''<big>Step 5: Weight Update (</big>'''<math>X_1 </math>'''<big>)</big>''' |
Author: Aolei Cao (ac3237), Ziyang Li (zl986), Junjia Liang (jl4439) (ChemE 6800 Fall 2024)
Stewards: Nathan Preuss, Wei-Han Chen, Tianqi Xiao, Guoqing Hu
Introduction
Problem formulation
1. Objective
Minimize the loss function
, where
and
is the weight vector to be optimized.
2. Parameters
- Where:
is the running average of the squared gradient.
is the corrected decay parameter.
is a regularization constant.
- Where:
is the relative step size.
is a regularization constant.
is the root mean square, defined as:


3. Algorithms
Adafactor for Weighted Vectors
Inputs:
- Initial point:

- Relative step sizes:
for
to 
- Second moment decay:
for
to
, with 
- Regularization constants:

- Clipping threshold:

Algorithm:
- For
to
:
- Compute adaptive step size:

- Compute gradient:

- Update second moment estimate:

- Compute normalized gradient:

- Apply clipping:

- Update parameter:

- End for
Adafactor for Weighted Matrices
Inputs:
- Initial point:

- Relative step sizes:
for
to 
- Second moment decay:
for
to
, with 
- Regularization constants:

- Clipping threshold:

Algorithm:
- For
to
:
- Compute adaptive step size:

- Compute gradient:

- Update row-wise second moment:

- Update column-wise second moment:

- Update overall second moment estimate:

- Compute normalized gradient:

- Apply clipping:

- Update parameter:

- End for
4. Proposed Hyperparameters for Adafactor
- Regularization constant 1:

- Regularization constant 2:

- Clipping threshold:

- Relative step size:

- Second moment decay:

Numerical Examples
Step-by-step instructions for determining the result of the first iteration.
Problem setup
Initial weights (
):
Gradient for first iteration (
):
Gradient of the loss function with respect to X
Hyperparameters setup
(Minimum learning rate scaling factor))
(Regularization constant)
(Clipping threshold)
(Relative step size)
(Second moment decay)
Step 1: Learning Rate Scaling
Define the relative step size
Step 1.1: Root Mean Square(RMS) calculation for
Root Mean Square(RMS) calculation for
RMS formula
Substitute the initial weights
Step 1.2: Find the Learning Rate Scaling (
):
Learning rate formula
Substitute the RMS
Step 2: Compute
(Element-wise Square of Gradient)
Compute the squared value of each element in the gradient matrix
.
Step 3: Find the moment estimate
Compute the exponential moving average of squared gradients to capture the variance or scale of gradients.
Step 3.1: Compute row moments (
)
This equation computes the row-wise second moments (
) as an exponential moving average of past moments (
) and the current row-wise mean of squared gradients (
), with a balance controlled by (
).
For
Since
, for first iteration:
. And because
is too small, we can ignore it. The update of
is:
Row-wise mean (
):
Step 3.2: Compute column moments (
)
The process is same as row moments.
Column-wise mean (
):
Step 3.3: Second Moment Estimate (
)
The Second Moment Estimate is calculated as the outer product of the row moments (
) and column moments (
).
Step 4: Update the vector (
)
Computed by scaling the gradient matrix
element-wise with the inverse square root of the second moment estimate (
)
step 4.1: Find the vector value of
Formula of
Substitute
and
step 4.2: Clipped Update Vector
Scale the update vector (
) to ensure its RMS value does not exceed a predefined clipping threshold (
), maintaining stability in updates.
Formula of
Compute RMS of
Since RMS(
)>d, scale
by
Step 5: Weight Update (
)
Adjust the weights (
) by subtracting the product of the learning rate (
) and the clipped update vector (
).
The result for first iteration.
Applications
Conclusion
Reference