Adafactor: Difference between revisions

From Cornell University Computational Optimization Open Textbook - Optimization Wiki
Jump to navigation Jump to search
Line 132: Line 132:


<math>\alpha_1 = max(0.001,0.806)\cdot 0.01=0.00806</math>
<math>\alpha_1 = max(0.001,0.806)\cdot 0.01=0.00806</math>


'''<big>Step 2: Compute <math>G^{2}_t</math>​ (Element-wise Square of Gradient)</big>'''
'''<big>Step 2: Compute <math>G^{2}_t</math>​ (Element-wise Square of Gradient)</big>'''
Line 138: Line 139:


<math>G^{2}_1 = \begin{bmatrix} 0.3^2&(-0.2)^2&0.4^2\\ (-0.5)^2&0.6^2&(-0.1)^2\\0.2^2&(-0.4)^2 &0.3^2 \end{bmatrix}</math>
<math>G^{2}_1 = \begin{bmatrix} 0.3^2&(-0.2)^2&0.4^2\\ (-0.5)^2&0.6^2&(-0.1)^2\\0.2^2&(-0.4)^2 &0.3^2 \end{bmatrix}</math>




Line 172: Line 174:


<math>C_1 = \begin{bmatrix} \tfrac{0.09+025+0.04}{3} \\ \tfrac{0.04+0.36+0.16}{3}\\\tfrac{0.16+0.01+0.09}{3} \end{bmatrix} = \begin{bmatrix} 0.1267\\ 0.1867\\0.0867\end{bmatrix} </math>
<math>C_1 = \begin{bmatrix} \tfrac{0.09+025+0.04}{3} \\ \tfrac{0.04+0.36+0.16}{3}\\\tfrac{0.16+0.01+0.09}{3} \end{bmatrix} = \begin{bmatrix} 0.1267\\ 0.1867\\0.0867\end{bmatrix} </math>


'''Step 3.3: Second Moment Estimate ('''<math>\hat{V_t}</math>​''')'''
'''Step 3.3: Second Moment Estimate ('''<math>\hat{V_t}</math>​''')'''
Line 186: Line 186:


<math>\hat{V}_1      =  \begin{bmatrix} 0.0122&0.0180&0.0084\\ 0.0262&0.0386&0.0179\\ 0.0122&0.0180&0.0084\end{bmatrix} </math>
<math>\hat{V}_1      =  \begin{bmatrix} 0.0122&0.0180&0.0084\\ 0.0262&0.0386&0.0179\\ 0.0122&0.0180&0.0084\end{bmatrix} </math>


'''<big>Step 4: Update the vector (<math>U_t </math>)</big>'''
'''<big>Step 4: Update the vector (<math>U_t </math>)</big>'''
Line 206: Line 204:


<math>U_1 = \begin{bmatrix} 2.711&-1.489&4.370\\-3.090&3.055&-0.747\\1.807&-2.978&3.278  \end{bmatrix} </math>
<math>U_1 = \begin{bmatrix} 2.711&-1.489&4.370\\-3.090&3.055&-0.747\\1.807&-2.978&3.278  \end{bmatrix} </math>


'''step 4.2: Clipped Update Vector <math>\hat{U_t} </math>'''
'''step 4.2: Clipped Update Vector <math>\hat{U_t} </math>'''
Line 224: Line 220:


'''<math>\hat{U_1} =  \begin{bmatrix} 0.965&-0.53&1.556 \\-1.1&1.088&-0.266\\0.664&-1.06&1.167 \end{bmatrix} </math>'''
'''<math>\hat{U_1} =  \begin{bmatrix} 0.965&-0.53&1.556 \\-1.1&1.088&-0.266\\0.664&-1.06&1.167 \end{bmatrix} </math>'''


'''<big>Step 5: Weight Update (</big>'''<math>X_1 </math>'''<big>)</big>'''
'''<big>Step 5: Weight Update (</big>'''<math>X_1 </math>'''<big>)</big>'''

Revision as of 17:02, 11 December 2024

Author: Aolei Cao (ac3237), Ziyang Li (zl986), Junjia Liang (jl4439) (ChemE 6800 Fall 2024)

Stewards: Nathan Preuss, Wei-Han Chen, Tianqi Xiao, Guoqing Hu

Introduction

Problem formulation

1. Objective

Minimize the loss function , where and is the weight vector to be optimized.

2. Parameters

  • Gradient:

  • Second moment estimate:

  • Where:
    • is the running average of the squared gradient.
    • is the corrected decay parameter.
    • is a regularization constant.
  • Step size:

  • Where:
    • is the relative step size.
    • is a regularization constant.
    • is the root mean square, defined as:

3. Algorithms

Adafactor for Weighted Vectors

Inputs:

  • Initial point:
  • Relative step sizes: for to
  • Second moment decay: for to , with
  • Regularization constants:
  • Clipping threshold:

Algorithm:

  • For to :
    • Compute adaptive step size:
    • Compute gradient:
    • Update second moment estimate:
    • Compute normalized gradient:
    • Apply clipping:
    • Update parameter:
  • End for

Adafactor for Weighted Matrices

Inputs:

  • Initial point:
  • Relative step sizes: for to
  • Second moment decay: for to , with
  • Regularization constants:
  • Clipping threshold:

Algorithm:

  • For to :
    • Compute adaptive step size:
    • Compute gradient:
    • Update row-wise second moment:
    • Update column-wise second moment:
    • Update overall second moment estimate:
    • Compute normalized gradient:
    • Apply clipping:
    • Update parameter:
  • End for

4. Proposed Hyperparameters for Adafactor

  • Regularization constant 1:
  • Regularization constant 2:
  • Clipping threshold:
  • Relative step size:
  • Second moment decay:

Numerical Examples

Step-by-step instructions for determining the result of the first iteration.

Problem setup

Initial weights ():

Gradient for first iteration (​):

Gradient of the loss function with respect to X

Hyperparameters setup

(Minimum learning rate scaling factor))

(Regularization constant)

(Clipping threshold)

(Relative step size)

(Second moment decay)

Step 1: Learning Rate Scaling

Define the relative step size

Step 1.1: Root Mean Square(RMS) calculation for

Root Mean Square(RMS) calculation for

RMS formula

Substitute the initial weights

Step 1.2: Find the Learning Rate Scaling ():

Learning rate formula

Substitute the RMS


Step 2: Compute ​ (Element-wise Square of Gradient)

Compute the squared value of each element in the gradient matrix .



Step 3: Find the moment estimate

Compute the exponential moving average of squared gradients to capture the variance or scale of gradients.

Step 3.1: Compute row moments ()

This equation computes the row-wise second moments ( ​) as an exponential moving average of past moments () and the current row-wise mean of squared gradients ( ​ ), with a balance controlled by ().

For

Since , for first iteration: . And because is too small, we can ignore it. The update of is:

Row-wise mean ():

Step 3.2: Compute column moments ()

The process is same as row moments.

Column-wise mean ():

Step 3.3: Second Moment Estimate ()

The Second Moment Estimate is calculated as the outer product of the row moments (​) and column moments (​).


Step 4: Update the vector ()

Computed by scaling the gradient matrix ​ element-wise with the inverse square root of the second moment estimate (​)

step 4.1: Find the vector value of

Formula of

Substitute and


step 4.2: Clipped Update Vector

Scale the update vector ( ​ ) to ensure its RMS value does not exceed a predefined clipping threshold (), maintaining stability in updates.

Formula of

Compute RMS of

Since RMS(​)>d, scale ​ by


Step 5: Weight Update ()

Adjust the weights () by subtracting the product of the learning rate () and the clipped update vector ( ).

The result for first iteration.




Applications

Conclusion

Reference