Quasi-Newton methods

From Cornell University Computational Optimization Open Textbook - Optimization Wiki
Jump to navigation Jump to search

Author: Jianmin Su (ChemE 6800 Fall 2020)

Steward: Allen Yang, Fengqi You

Quasi-Newton Methods are a kind of methods used to solve nonlinear optimization problems. They are based on Newton's method yet can be an alternative to Newton's method when the objective function is not twice-differentiable, which means the Hessian matrix is unavailable, or it is too expensive to calculate the Hessian matrix and its inverse.

Introduction

The first quasi-Newton algorithm was developed by W.C. Davidon in the mid1950s and it turned out to be a milestone in nonlinear optimization problems. He was trying to solve a long optimization calculation but he failed to get the result with the original method due to the low performances of computers at that time, thus he managed to build the quasi-Newton method to solve it. Later then, Fletcher and Powell proved that the new algorithm was more efficient and more reliable than the other existing methods.

During the following years, numerous variants were proposed, include Broyden's method (1965), the SR1 formula (Davidon 1959, Broyden 1967), the DFP method (Davidon, 1959; Fletcher and Powell, 1963), and the BFGS method (Broyden, 1969; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970).

In optimization problems, Newton's method uses first and second derivatives, gradient and the Hessian in multivariate scenarios, to find the optimal point, it is applied to a twice-differentiable function to find the roots of the first derivative (solutions to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=0} ), also known as the stationary points of .

The iteration of Newton's method is usually written as: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_{k+1}=x_k-H^{-1}\cdot\bigtriangledown f(x_k) } , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k } is the iteration number, is the Hessian matrix and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H=[\bigtriangledown ^2 f(x_k)]}

Iteraton would stop when it satisfies the convergence criteria like Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {df \over dx}=0, ||\bigtriangledown f(x)||<\epsilon \text{ or } |f(x_{k+1})-f(x_k)|<\epsilon }

Though we can solve an optimization problem quickly with Newton's method, it has two obvious disadvantages:

  1. The objective function must be twice-differentiable and the Hessian matrix must be positive definite.
  2. The calculation is costly because it requires to compute the Jacobian matrix, Hessian matrix, and its inverse, which is time-consuming when dealing with a large-scale optimization problem.

However, we can use Quasi-Newton methods to avoid these two disadvantages.·


Quasi-Newton methods are similar to Newton's method but with one key idea that is different, they don't calculate the Hessian matrix, they introduce a matrix Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B} to estimate the Hessian matrix instead so that they can avoid the time-consuming calculations of Hessian matrix and its inverse. And there are many variants of quasi-Newton methods that simply depend on the exact methods they use in the estimation of the Hessian matrix.

Theory and Algorithm

To illustrate the basic idea behind quasi-Newton methods, we start with building a quadratic model of the objective function at the current iterate Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_k} :

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m_k(p)=f_k+\bigtriangledown f_k^Tp+\frac{1}{2}p^TB_kp} (1.1),

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_k } is an Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n\times n } symmetric positive definite matrix that will be updated at every iteration.

The minimizer of this convex quadratic model is:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p_k=-B_k^{-1}\bigtriangledown f_k } (1.2),

which is also used as the search direction.

Then the new iterate could be written as: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_{k+1}=x_{k}+\alpha _kp_k} (1.3),

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha _k } is the step length that should satisfy the Wolfe conditions. The iteration is similar to Newton's method, but we use the approximate Hessian Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_{k}} instead of the true Hessian.

To maintain the curve information we got from the previous iteration in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_{k+1}} , we generate a new iterate Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_{k+1}} and new quadratic modelto in the form of:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m_{k+1}(p)=f_{k+1}+\bigtriangledown f_{k+1}^Tp+\frac{1}{2}p^TB_{k+1}p} (1.4).

To construct the relationship between 1.1 and 1.4, we require that in 1.1 at Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p=0} the function value and gradient match Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_k} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bigtriangledown f_k} , and the gradient of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m_{k+1}} should match the gradient of the objective function at the latest two iterates Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_k} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_{k+1}} , then we can get:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bigtriangledown m_{k+1}(-\alpha _kp_k)=\bigtriangledown f_{k+1}-\alpha _kB_{k+1}p_k=\bigtriangledown f_k } (1.5)

and with some arrangements:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_{k+1}\alpha _k p_k=\bigtriangledown f_{k+1}-\bigtriangledown f_k } (1.6)

Define:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_k=x_{k+1}-x_k} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_k=\bigtriangledown f_{k+1}-\bigtriangledown f_k} (1.7)

So that (1.6) becomes: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_{k+1}s_k=y_k } (1.8), which is the secant equation.

To make sure Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_{k+1}} is still a symmetric positive definite matrix, we need Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_k^Ts_k>0} (1.9).

To further preserve properties of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_{k+1}} and determine Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_{k+1}} uniquely, we assume that among all symmetric matrices satisfying secant equation, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_{k+1}} is closest to the current matrix Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_k} , which leads to a minimization problem:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_{k+1}=\underset{B}{min}||B-B_k|| } (1.10) s.t. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B=B^T} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Bs_k=y_k} ,

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_k} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_k} satisfy (1.9) and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_k} is symmetric and positive definite.

Different matrix norms applied in (1.10) results in different quasi-Newton methods. The weighted Frobenius norm can help us get an easy solution to the minimization problem: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ||A||_W=||W^\frac{1}{2}AW^\frac{1}{2}|| _F} (1.11).

The weighted matrix Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle W} can be any matrix that satisfies the relation Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Wy_k=s_k} .

We skip procedures of solving the minimization problem (1.10) and here is the unique solution of (1.10):

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_{k+1}=(I-\rho y_ks_k^T)B_k(I-\rho s_ky_k^T)+\rho y_ky_k^T} (1.12)

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho=\frac{1}{y_k^Ts_k}} (1.13)

Finally, we get the updated Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_{k+1}} . However, according to (1.2) and (1.3), we also need the inverse of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_{k+1}} in next iterate.

To get the inverse of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_{k+1}} , we can apply the Sherman-Morrison formula to avoid complicated calculation of inverse.

Set Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H_k=B_k^{-1} } , with Sherman-Morrison formula we can get:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H_{k+1}=H_k+\frac{s_k s_k^T}{s_k^T y_k}-\frac{H_k y_k y_k^T H_k}{y_k^T H_k y_k} } (1.14)

With the derivation above, we can now understand how do quasi-Newton methods get rid of calculating the Hessian matrix and its inverse. We can directly estimate the inverse of Hessian and we can use (1.14) to update the approximation of the inverse of Hessian, which leads to the DFP method, or we can directly estimate the Hessian matrix and this is the main idea in the BFGS method.

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_k H_k }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle }

DFP method

The DFP method, which is also known as the Davidon–Fletcher–Powell formula, is named after W.C. Davidon, Roger Fletcher, and Michael J.D. Powell. It was proposed by Davidon in 1959 first and then improved by Fletched and Powell. DFP method uses an Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n\times n } symmetric positive definite matrix Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_k } to estimate the inverse of Hessian matrix and its algorithm is shown below.

DFP Algorithm

To avoid confusion, we use Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D} to represent the approximation of the inverse of the Hessian matrix.

  1. Given the starting point Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_0} ; convergence tolerance Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon, \epsilon>0} ; the initial estimation of inverse Hessian matrix Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D_0=I} ; Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k=0} .
  2. Compute the search direction Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d_k=-D_k\cdot \bigtriangledown f_k} .
  3. Compute the step length Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda_k} with a line search procedure that satisfies Wolfe conditions. And then set
    Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_k={\lambda}_k d_k} ,
    Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_{k+1}=x_k+s_k}
  4. If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ||\bigtriangledown f_{k+1}||<\epsilon} , then end of the iteration, otherwise continue step5.
  5. Computing Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_k=g_{k+1}-g_k} .
  6. Update the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D_{k+1}} with
    Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D_{k+1}=D_k+\frac{s_k s_k^T}{s_k^T y_k}-\frac{D_k y_k y_k^T D_k}{y_k^T D_k y_k} }
  7. Update Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k} with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k=k+1} and go back to step2.


BFGS method

BFGS method is named for its four discoverers Broyden, Fletcher, Goldfarb, and Shanno, it is considered as the most effective quasi-Newton algorithm. Unlike the DFP method, the BFGS method uses an symmetric positive definite matrix Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_k } to estimate the Hessian matrix.

BFGS Algorithm

  1. Given the starting point Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_0} ; convergence tolerance Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon, \epsilon>0} ; the initial estimation of Hessian matrix Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_0=I} ; Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k=0} .
  2. Compute the search direction Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d_k=-B_k^{-1}\cdot \bigtriangledown f_k} .
  3. Compute the step length Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda_k} with a line search procedure that satisfies Wolfe conditions. And then set
    Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_k={\lambda}_k d_k} ,
    Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_{k+1}=x_k+s_k}
  4. If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ||\bigtriangledown f_{k+1}||<\epsilon} , then end of the iteration, otherwise continue step5.
  5. Computing Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_k=\bigtriangledown f_{k+1}-\bigtriangledown f_k} .
  6. According to (1.12), (1.13) and (1.14), update the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_{k+1}^{-1} } with
    Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_{k+1}^{-1}=(I-\rho s_ky_k^T)B_k^{-1}(I-\rho y_ks_k^T)+\rho s_ks_k^T} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho=\frac{1}{y_k^Ts_k}}
  7. Update Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k} with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k=k+1} and go back to step2.


Numerical Example

The following is an example to show how to solve an unconstrained nonlinear optimization problem with the DFP method.

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{min }\begin{align} f(x_1, x_2) & = x_1^2 +\frac{1}{2}x_2^2+3\end{align}}

Step 1:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_0=(1,2)^T }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_0} : Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bigtriangledown f_x} : Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{pmatrix} 2x_1 \\ x_2 \end{pmatrix}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon=10^{-5}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k=0}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda=1}

Step 2:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d_0=-B_0^{-1}\bigtriangledown f_0} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =-\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{pmatrix} 2 \\ 2 \end{pmatrix}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\begin{pmatrix} -2 \\ -2 \end{pmatrix}}

Step 3:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_0=d_0}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_1=x_0+s_0} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\begin{pmatrix} 1 \\ 2 \end{pmatrix}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle +\begin{pmatrix} -2 \\ -2 \end{pmatrix}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\begin{pmatrix} -1 \\ 0 \end{pmatrix}}

Step 4:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bigtriangledown f_0} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\begin{pmatrix} -2 \\ 0 \end{pmatrix}}

Step 5:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_0=\bigtriangledown f_1-\bigtriangledown f_0} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\begin{pmatrix} -4 \\ -2 \end{pmatrix}}

Step 6:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_1=B_0+\frac{s_0 s_0^T}{s_0^T y_0}-\frac{D_0 y_0 y_0^T D_0}{y_0^T D_0 y_0} } Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle +\frac{1}{12}\begin{pmatrix} 4 & 4 \\ 4 & 4 \end{pmatrix}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{1}{20}\begin{pmatrix} 16 & 8 \\ 8 & 4 \end{pmatrix}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\begin{pmatrix} 0.53333 & -0.0667 \\ -0.0667 & 1.1333 \end{pmatrix}}



Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle }

Application

Quasi-Newton methods are used in various programming languages to solve optimization problems:

  1. Mathematica includes quasi-Newton solvers.
  2. In MATLAB's Optimization Toolbox, the fminunc function uses (among other methods) the BFGS quasi-Newton method.
  3. R's optim general-purpose optimizer routine uses the BFGS method by using method="BFGS".<ref>
  4. Scipy.optimize has fmin_bfgs. In the SciPy extension to Python, the scipy.optimize.minimize function includes, among other methods, a BFGS implementation.

Conclusion

References