Adafactor
Author: Aolei Cao (ac3237), Ziyang Li (zl986), Junjia Liang (jl4439) (ChemE 6800 Fall 2024)
Stewards: Nathan Preuss, Wei-Han Chen, Tianqi Xiao, Guoqing Hu
Introduction
Problem formulation
1. Objective
Minimize the loss function , where and is the weight vector to be optimized.
2. Parameters
- Gradient:
- Second moment estimate:
- Where:
- is the running average of the squared gradient.
- is the corrected decay parameter.
- is a regularization constant.
- Step size:
- Where:
- is the relative step size.
- is a regularization constant.
- is the root mean square, defined as:
3. Algorithms
Adafactor for Weighted Vectors
Inputs:
- Initial point:
- Relative step sizes: for to
- Second moment decay: for to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T} , with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{\beta}_{21} = 0}
- Regularization constants: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon_1, \epsilon_2}
- Clipping threshold: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d}
Algorithm:
- For Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t = 1}
to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T}
:
- Compute adaptive step size: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha_t = \max(\epsilon_2, \text{RMS}(X_{t-1})) \rho_t}
- Compute gradient: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G_t = \nabla f_t(X_{t-1})}
- Update second moment estimate: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{V}_t = \hat{\beta}_{2t} \hat{V}_{t-1} + (1 - \hat{\beta}_{2t})(G_t^2 + \epsilon_1 1_n)}
- Compute normalized gradient: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle U_t = \frac{G_t}{\sqrt{\hat{V}_t}}}
- Apply clipping: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{U}_t = \frac{U_t}{\max(1, \text{RMS}(U_t) / d)}}
- Update parameter: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X_t = X_{t-1} - \alpha_t \hat{U}_t}
- End for
Adafactor for Weighted Matrices
Inputs:
- Initial point: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X_0 \in \mathbb{R}^{n \times m}}
- Relative step sizes: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho_t} for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t = 1} to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T}
- Second moment decay: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{\beta}_{2t}} for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t = 1} to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T} , with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{\beta}_{21} = 0}
- Regularization constants: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon_1, \epsilon_2}
- Clipping threshold: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d}
Algorithm:
- For Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t = 1}
to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T}
:
- Compute adaptive step size: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha_t = \max(\epsilon_2, \text{RMS}(X_{t-1})) \rho_t}
- Compute gradient: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G_t = \nabla f_t(X_{t-1})}
- Update row-wise second moment: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R_t = \hat{\beta}_{2t} R_{t-1} + (1 - \hat{\beta}_{2t})(G_t^2 + \epsilon_1 1_n 1_m^T) 1_m}
- Update column-wise second moment: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C_t = \hat{\beta}_{2t} C_{t-1} + (1 - \hat{\beta}_{2t}) 1_n^T (G_t^2 + \epsilon_1 1_n 1_m^T)}
- Update overall second moment estimate: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{V}_t = \frac{R_t C_t}{1_n^T R_t}}
- Compute normalized gradient: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle U_t = \frac{G_t}{\sqrt{\hat{V}_t}}}
- Apply clipping: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{U}_t = \frac{U_t}{\max(1, \text{RMS}(U_t) / d)}}
- Update parameter: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X_t = X_{t-1} - \alpha_t \hat{U}_t}
- End for
Why Clipping
Adafactor employs clipping to maintain numerical stability, especially since it is designed for use with very large models and often works with unscaled learning rates.
- Clipping prevents the update step from becoming very large, which would destabilize training
- Clipping mitigates the effects of very large gradients preventing numerical instability
Therefore, implementing clipping helps ensure stability and efficient training without requiring per-parameter scaling like Adam.
Why Adafactor is more memory efficient, compared to Adam
Row-wise and Column-wise Second Moment Updates
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R_t = \hat{\beta}_{2t} R_{t-1} + (1 - \hat{\beta}_{2t})(G_t^2 + \epsilon_1 1_n 1_m^T) 1_m}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C_t = \hat{\beta}_{2t} C_{t-1} + (1 - \hat{\beta}_{2t}) 1_n^T (G_t^2 + \epsilon_1 1_n 1_m^T)}
Instead of storing the full Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G_t^2} , Adafactor computes the row and column respectively, which reduces the memory requirements from Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle O(n\times m)} to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle O(n + m)}
Factored Representation of the Second Moment
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{V}_t = \frac{R_t C_t}{1_n^T R_t}}
This updates the second momentum based on the outer product Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R_t C_t} .
- However, this is not Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle O(n\times m)}
since
- The operation is performed element-wise, so it actually never materializes Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{V_t}} as a Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n\times n} matrix
- It also only storing Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R_t} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C_t} instead of storage the full second-moment matrix
4. Proposed Hyperparameters for Adafactor
- Regularization constant 1: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon_1 = 10^{-30}}
- Ensures numerical stability by preventing division by zero in the calculation of second-moment estimates, so the numerical value should be very close to zero
- Regularization constant 2: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon_2 = 10^{-3}}
- Help to stabilize parameter updates by controlling the effect of second-moment scaling in low-magnitude scenarios. Compared to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon_2} , a relatively larger value ensures the stability of noise and low-magnitude scenarios.
- Clipping threshold: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d = 1}
- A threshold of 1 balances stability and learning efficiency. It avoids excessive suppression of large gradients, which could hinder learning, while still protecting against extreme updates that could destabilize the model.
- Relative step size: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho_t = \min(10^{-2}, 1/\sqrt{t})}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle min(10^-2, ...)} can caps the learning rate at 10^-2, which is a empirical found for upper bound
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{\sqrt{t}}} This step size promote convergence of the model. This rate ensures a balance between sufficient exploration in early iteration and stability in later iterations
- Second moment decay: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{\beta}_{2t} = 1 - t^{-0.8}}
- 1-...: ensures the decay factor remains close to 1
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^{-0,8}} the power 0.8 ensures a balance between rapid adaptation in early training and later iterations