Sparse Reconstruction with Compressed Sensing
Author: Ngoc Ly (SysEn 5800 Fall 2021)
Compressed Sensing (CS)
Compressed Sensing summary here
Introduction
often not really sparse but approximately sparse
for is a Random Gaussian or Bernoulli matrix
are the observed y samples
noise vector k e k 2 ≤ η
s.t.
How can we reconstruct x from
The goal is to reconstruct given and
Sensing matrix must satisfy RIP i.e. Random Gaussian or Bernoulli matrixies satisfies (cite)
let be an index set enumerates the columns of and is an under determined systems with infinite solutions. Why norm does not work
What is compression is synonymous with to the sparsity.
The problem formulation is to recover sparse data
The support of is we say is sparse when
We are interested in the smallest , i.e.
Before we get into RIP lets talk about RIC
Restricted Isometry Constant (RIC) is the smallest that satisfies the RIP condition introduced by Candes, Tao
Random Gaussian and Bernoulli satisfies RIP
Let satisfy RIP, Let be an index set For is a restriction on denoted by to k-sparse s.t. RIP is satisfied the i.e. and where the columns of is indexed by
In search for a unique solution we have the following optimization problem. , which is an NP-Hard.
From Results of Candes, Romberg, Tao, and Donoho
If satisfies RIP and $\mathbf{y}$ is sparse the has a unique solution. The equivelent convex program to the . Failed to parse (syntax error): {\displaystyle \mathbf{\hat{s}} = \underset{s}{arg \. min} \| \mathbf{s}\|_1 \quad s.t. \quad \mathbf{y} = \Phi \mathbf{s}}
�
x i , i f i ∈ S
( x | S ) i =
0 otherwise
RIP defined as
( 1 − δ s )k x k 22 ≤ k Φx k 22 ≤ ( 1 + δ s )k x k 22
3 Lemmas Page 267 Blumensath Davies IHT for CS
Lemma 1(Blumensath, Davis 2009 Iterative hard thresholding for compressed
sensing), For all index sets Γ and all Φ for which RIP holds with s = | Γ | that is
s = supp ( x )
1k Φ Γ T k 2 ≤
q
1 + δ | Γ | k y k 2
( 1 − δ | Γ | )k x Γ k 22 ≤ k Φ Γ T Φ Γ x Γ k 22 ≤ ( 1 + δ | Γ | )k x Γ k 22
and
k( I − Φ Γ T Φ Γ )k 2 ≤ δ | Γ | k x Γ k 2
SupposeΓ ∩ Λ = ∅
k Φ Γ T Φ Λ ) x Λ k 2 ≤ δ s k x Λ k 2
Lemma 2 (Needell Tropp, Prop 3.5 in CoSaMP: Iterative signal recovery
from incomplete and inaccurate √ samples)
If Φ satisfies RIP k Φx s k 2 ≤ 1 + δ s k x s k 2 , ∀ x s : k x s k 0 ≤ s, Then ∀ x
k Φx k 2 ≤
p
1 + δ s k x k 2 +
p
1 + δ s
k x k 1
sqrts
Lemma 3 (Needell Tropp, Prop 3.5 in CoSaMP: Iterative signal recovery
from incomplete and inaccurate samples)
Let x s be the best s-term approximation to x. Let x r = x − x s Let
y = Φx + e = Φx s + Φx r + e = Φx s + ẽ
If Φ satisfies RIP for sparsity s, then the norm of error ẽ is bounded by
k ẽ k 2 ≤
p
1 + δ s k x − x s k 2 +
p
1 + δ s
k x − x s k 1
√
+ k e k 2
s
∀ x
Theory
Gel’fend n-width
Errors E ( S, Φ, D )
Definition Mutual Coherence
LetA ∈ R M × N , themutualcoherenceµ A isde f inedby :
µ A =
|h a i , a j i|
k a i kk a j k
i 6 = j
We want a small µ A because it will be close ot the normal matrix, which
will satisfies RIP
Algorithm IHT
- Initialize
- output
- While halting criterion false do
end while return:
Numerical Example
Iterative Hard Thresholding IHT