Outer-approximation (OA)
From Cornell University Computational Optimization Open Textbook - Optimization Wiki
Revision as of 04:19, 26 November 2021 by
Yda5
(
talk
|
contribs
)
(
diff
)
← Older revision
|
Latest revision
(
diff
) |
Newer revision →
(
diff
)
Jump to navigation
Jump to search
Author: Yousef Aloufi (CHEME 6800 Fall 2021)
Contents
1
Introduction
2
Theory
3
Example
4
Conclusion
5
References
Introduction
Theory
Example
Minimize
f
(
x
)
=
y
1
+
y
2
+
(
x
1
)
2
+
(
x
2
)
2
{\displaystyle f(x)=y_{1}+y_{2}+{\big (}x_{1}{\big )}^{2}+{\big (}x_{2}{\big )}^{2}}
Subject to
(
x
1
−
2
)
2
−
x
2
≤
0
{\displaystyle {\big (}x_{1}-2{\big )}^{2}-x_{2}\leq 0}
x
1
−
2
y
1
≥
0
{\displaystyle x_{1}-2y_{1}\geq 0}
x
1
−
x
2
−
3
(
1
−
y
1
)
≥
0
{\displaystyle x_{1}-x_{2}-3{\big (}1-y_{1}{\big )}\geq 0}
x
1
+
y
1
−
1
≥
0
{\displaystyle x_{1}+y_{1}-1\geq 0}
x
2
−
y
2
≥
0
{\displaystyle x_{2}-y_{2}\geq 0}
x
1
+
x
2
≥
3
y
1
{\displaystyle x_{1}+x_{2}\geq 3y_{1}}
y
1
+
y
2
≥
1
{\displaystyle y_{1}+y_{2}\geq 1}
0
≤
x
1
≤
4
{\displaystyle 0\leq x_{1}\leq 4}
0
≤
x
2
≤
4
{\displaystyle 0\leq x_{2}\leq 4}
y
1
,
y
2
∈
{
0
,
1
}
{\displaystyle y_{1},y_{2}\in {\big \{}0,1{\big \}}}
Conclusion
References
Navigation menu
Personal tools
Log in
Request account
Namespaces
Page
Discussion
English
Views
Read
View source
View history
More
Navigation
Textbook Home
About This Text
Wiki Editing Help
Feedback (2024)
Feedback (2021)
Feedback (2020)
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information