Outer-approximation (OA)
Author: Yousef Aloufi (CHEME 6800 Fall 2021)
Introduction
Theory
Example
Numerical Example
The following is a step-by-step solution for an MINLP optimization problem using Outer-Approximation method:[1]
Minimize Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)= y_{1} +y_{2} + \big(x_{1}\big)^{2} +\big(x_{2}\big)^{2} }
Subject to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \big(x_{1}-2\big)^{2}-x_{2} \leq 0}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_{1}-2y_{1} \geq 0}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_{1}-x_{2}-3 \big(1-y_{1}\big) \geq 0}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_{1}+y_{1}-1\geq 0}
Step 1a: Start from Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle y_{1}=y_{2}=1} and solve the NLP below:
Minimize Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f= 2+ \big(x_{1}\big)^{2} +\big(x_{2}\big)^{2} } Subject to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \big(x_{1}-2\big)^{2}-x_{2} \leq 0} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_{1}-2 \geq 0} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_{1}-x_{2} \geq 0}
Step 1b: Solve the MILP master problem with OA for :
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f\big(x\big) =\big( x_{1} \big)^{2} +\big( x_{2} \big)^{2},~~ \bigtriangledown f\big(x\big)=[2x_{1}~~~~2x_{1}]^{T} ~~for~~x^{*} =[2~~~~1]^{T} }
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f{\big (}x^{*}{\big )}+\bigtriangledown f{\big (}x^{*}{\big )}^{T}{\big (}x-x^{*}{\big )}=5+[4~~~~2]{\begin{bmatrix}x_{1}-2\\x_{2}-1\end{bmatrix}}=5+4{\big (}x_{1}-2{\big )}+2{\big (}x_{2}-1{\big )}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g\big(x\big)=\big(x_{1}-2\big)^{2}-x_{2},~~ \bigtriangledown g\big(x\big)=[2x_{1}-4~~~~-1]^{T}~~for~~x^{*} =[2~~~~1]^{T} }
Minimize Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha } Subject to
MILP Solution: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle x_{1}=2, x_{2}=1,y_{1}=1, y_{2}=0}
, Lower Bound = 6
Lower Bound < Upper Bound, Integer cut: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle y_{1}- y_{2}\leq 0}
Step 2a: Start from
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle y=[1,0]}
and solve the NLP below:
Minimize Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f= 1+ \big(x_{1}\big)^{2} +\big(x_{2}\big)^{2} }
Subject to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \big(x_{1}-2\big)^{2}-x_{2} \leq 0}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_{1}-2 \geq 0}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_{1}-x_{2} \geq 0}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_{1} \geq 0}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_{2} \geq 0}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_{1}+x_{2} \geq 3}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0 \leq x_{1}\leq 4}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0 \leq x_{2}\leq 4}
Solution: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle x_{1}=2, x_{2}=1}
, Upper Bound = 6
Upper Bound = 6 = Lower Bound, Optimum!
Optimal Solution for the MINLP: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle x_{1}=2, x_{2}=1,y_{1}=1, y_{2}=0}
GAMS Model
The above MINLP example can be expressed in the General Algebraic Modeling System (GAMS) as follows:
Variable z;
Positive Variables x1, x2;
Binary Variables y1, y2;
Equations obj, c1, c2, c3, c4, c5, c6, c7;
obj.. z =e= y1 + y2 + sqr(x1) + sqr(x2);
c1.. sqr(x1 - 2) - x2 =l= 0;
c2.. x1 - 2*y1 =g= 0;
c3.. x1 - x2 - 3*sqr(1 - y1) =g= 0;
c4.. x1 + y1 - 1 =g= 0;
c5.. x2 - y2 =g= 0;
c6.. x1 + x2 =g= 3*y1;
c7.. y1 + y2 =g= 1;
x1.lo = 0; x1.up = 4;
x2.lo = 0; x2.up = 4;
model Example /all/;
option minlp = bonmin;
option optcr = 0;
solve Example minimizing z using minlp;
display z.l, x1.l, x2.l, y1.l, y2.l;
Conclusion
References
- ↑ Content of the reference