Exponential transformation

From Cornell University Computational Optimization Open Textbook - Optimization Wiki
Revision as of 22:10, 12 December 2021 by Dasogil (talk | contribs)
Jump to navigation Jump to search

Example of Convexification in MINLP

The following MINLP problem can take a Covexification approach using exponential transformation:

min $ Z = 5{x_1^2}{x_2^8} + 2{x_1} + \frac{x_2^3} + 5{y_1} + 2 {y_2^2} $

s.t.

$ {x_1} \leq 7{x_2^{0.2}} $

$ 2{x_1^3} - y_1^2 \leq 1 $

$ x_1 \geq 0 $

$ x_2 \leq 4 $

$ y_1 = 0,1 $ $ y_2 = 0,1 $

Using the exponential transformation to continuous variables $ x_1, x_2, x_3 $ by substituting $ x_1 = e^{u_1} and x_2 = e^{u_2} $ described the problem becomes the following:

$ min Z = 5{e^{2{u_1}}}{e^{8{u_2}}} + 2{e^{u_1}}{e^{2u_2}} + \frac{e^{{u_2}{3}}} + 5{y_1} + 2 {y_2^2} $

$ s.t $

$ {e^{u_1}} \leq 7{e^{0.2{u_2}}} $

$ 2{e^{3{u_1}}} - y_1^2 \leq 1 $

$ e^{u_1} \geq 0 $

$ e^{u_2} \leq 4 $

$ y_1 = 0,1 $ $ y_2 = 0,1 $

With additional logarithmic simplification through properties of natural logarithm:

min $ Z = 5{e^{2{u_1}}}{e^{8{u_2}}} + 2{e^{u_1}}{e^{2u_2}} + \frac{e^{{u_2}{3}}} + 5{y_1} + 2 {y_2^2} $

s.t

$ u_1 \leq \ln 7 + 0.2{u_2} $

$ 2{e^{3{u_1}}} - y_1^2 \leq 1 $

$ {u_2} \leq \ln 4 $

$ y_1 = 0,1 $ $ y_2 = 0,1 $

Where $ u_1 $ is unbounded due to logarithmic of 0 being indefinite.

The transformed objective function can be show to be convex through the positive-definite test of the Hessian, for the example above the Hessian is as follows [1]:

In order to prove the convexity of the transformed functions the positive definite test of Hessian is used as defined in "Optimization of Chemical Processes" [2] can be used. This tests the Hessian defined as:

$ H(x) = H = \nabla^2f(x) $

to test that

$ Q(x)\geq 0 $

where

$ Q(x) = x^THx $

for all $ x \neq 0 $

for functions the Hessian is defined as:

$ \begin{bmatrix} X & X \\ X & Y \end{bmatrix} $


In the example above the hessian is defined as:

$ \begin{bmatrix} X & X \\ X & Y \end{bmatrix} $

Therefore H(x) is positive-definite and strictly convex.

  1. Chiang, Mung. (2005). Geometric Programming for Communication Systems. 10.1561/9781933019574; https://www.princeton.edu/~chiangm/gp.pdf
  2. T.F. Edgar, D.M. Himmelblau, L.S. Lasdon, Optimization of Chemical Processes. McGraw-Hill, 2001.