Quadratic constrained quadratic programming

From Cornell University Computational Optimization Open Textbook - Optimization Wiki
Jump to navigation Jump to search

Introduction

Algorithm Discussion

Numerical Example

Consider the following Quadratically Constrained Quadratic Programming (QCQP) problem to gain a better understanding:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{aligned} \text{minimize} \quad & f_0(x) = (x_1 - 2)^2 + x_2^2 \\ \text{subject to} \quad & f_1(x) = x_1^2 + x_2^2 - 1 \leq 0, \\ & f_2(x) = (x_1 - 1)^2 + x_2^2 - 1 \leq 0. \end{aligned} }

We will solve this QCQP problem using the Karush-Kuhn-Tucker (KKT) conditions, which are necessary conditions for a solution in nonlinear programming to be optimal, given certain regularity conditions.

Step 1: Formulate the Lagrangian

The Lagrangian Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L} combines the objective function and the constraints, each multiplied by a Lagrange multiplier Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda_i} :

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L(x, \lambda_1, \lambda_2) = (x_1 - 2)^2 + x_2^2 + \lambda_1 (x_1^2 + x_2^2 - 1) + \lambda_2 \left( (x_1 - 1)^2 + x_2^2 - 1 \right). }

For each constraint:

- Complementary Slackness:

 Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle    \lambda_i \geq 0, \quad \lambda_i f_i(x) = 0, \quad \text{for } i = 1, 2.   }

- Primal Feasibility:

 Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle    f_i(x) \leq 0 \quad \text{for } i = 1, 2.   }

Step 2: Compute the Gradient of the Lagrangian

Compute the partial derivatives with respect to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_1} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_2} :

- Partial Derivative with respect to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_1} :

 Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle    \frac{\partial L}{\partial x_1} = 2(x_1 - 2) + 2\lambda_1 x_1 + 2\lambda_2 (x_1 - 1).   }

- Partial Derivative with respect to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_2} :

 Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle    \frac{\partial L}{\partial x_2} = 2x_2 + 2\lambda_1 x_2 + 2\lambda_2 x_2.   }

Step 3: Stationarity Conditions

Set the gradients to zero:

- Equation (1):

 Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle    2(x_1 - 2) + 2\lambda_1 x_1 + 2\lambda_2 (x_1 - 1) = 0.   }

- Equation (2):

 Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle    2x_2 + 2\lambda_1 x_2 + 2\lambda_2 x_2 = 0.   }

From Equation (2), since Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_2 (1 + \lambda_1 + \lambda_2) = 0} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda_i \geq 0} for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i = 1, 2} , it follows that:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_2 = 0. }

Substitute Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_2 = 0} into the constraints:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{aligned} x_1^2 - 1 &\leq 0 \quad \Rightarrow \quad x_1 \in [-1, 1], \\ (x_1 - 1)^2 - 1 &\leq 0 \quad \Rightarrow \quad x_1 \in [0, 2]. \end{aligned} }

Combining both constraints:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_1 \in [0, 1]. }

Step 4: Solve for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_1} Using Equation (1)

Substitute Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_2 = 0} into Equation (1):

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (x_1 - 2) + \lambda_1 x_1 + \lambda_2 (x_1 - 1) = 0. }

Assume Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda_1 > 0} (since Constraint 1 is active):

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_1^2 - 1 = 0 \quad \Rightarrow \quad x_1 = \pm 1. }

But from the feasible range, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_1 = 1} .

Substitute Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_1 = 1} into the equation:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda_1 = 1. }

This is acceptable.

Assume Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda_2 = 0} because Constraint 2 is not active at Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_1 = 1} .

Step 5: Verify Complementary Slackness

- Constraint 1:

 Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle    \lambda_1 (x_1^2 - 1) = 1 \times (1 - 1) = 0.   }

- Constraint 2:

 Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle    \lambda_2 \left( (x_1 - 1)^2 + x_2^2 - 1 \right) = 0 \times (-1) = 0.   }

Step 6: Verify Primal Feasibility

- Constraint 1:

 Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle    x_1^2 - 1 = 1 - 1 = 0 \leq 0.   }

- Constraint 2:

 Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle    (x_1 - 1)^2 + x_2^2 - 1 = -1 \leq 0.   }

Step 7: Conclusion

- Optimal Solution:

 Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle    x_1^* = 1, \quad x_2^* = 0.   }

- Minimum Objective Value:

 Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle    f_0^*(x) = (1 - 2)^2 + 0 = 1.   }

Application

Conclusion