Interior-point method for LP

From Cornell University Computational Optimization Open Textbook - Optimization Wiki
Revision as of 11:57, 13 November 2020 by Ss3966 (talk | contribs)
Jump to navigation Jump to search

Authors: Tomas Lopez Lauterio, Rohit Thakur and Sunil Shenoy Steward: Dr. Fengqi You and Akshay Ajagekar

Introduction

Linear programming problems seeks to optimize linear functions given linear constraints. There are several applications of linear programming including inventory control, production scheduling, transportation optimization and efficient manufacturing processes. Simplex method has been a very popular method to solve these linear programming problems and has served these industries well for a long time. But over the past 40 years, there have been significant number of advances in different algorithms that can be used for solving these types of problems in more efficient ways, especially where the problems become very large scale in terms of variables and constraints. In early 1980s Karmarkar (1984) published a paper introducing interior point methods to solve linear-programming problems. A simple way to look at differences between simplex method and interior point method is that a simplex method moves along the edges of a polytope towards a vertex having a lower value of the cost function, whereas an interior point method begins its iterations inside the polytope and moves towards the lowest cost vertex without regard for edges. This approach reduces the number of iterations needed to reach that vertex, thereby reducing computational time needed to solve the problem.



Theory and Problem Formulation

Numerical Example

Applications

Conclusion

References