Optimization with absolute values

From Cornell University Computational Optimization Open Textbook - Optimization Wiki
Revision as of 23:43, 21 November 2020 by Bramado (talk | contribs) (Intro/Conclusion/Formatting)
Jump to navigation Jump to search

Authors: Matthew Chan (mdc297), Yilian Yin (), Brian Amado (ba392), Peter (pmw99), Dewei Xiao (dx58) - SYSEN 5800 Fall 2020

Steward: Fengqi You


Absolute values can make it relatively difficult to to determine the optimal solution when handled without first converting to standard form. This conversion of the objective function is a good first step in solving optimization problems with absolute values. As a result, you can go on to solve the problem using linear programing techniques.


Defining Absolute Values

An absolute value of a real number can be described as its distance away from zero, or the non-negative magnitude of the number. Thus,

Absolute values can exist in optimization problems in two primary instances: in constraints and in the objective function.

Absolute Values in Constraints

Within linear equations, linear constraints can exist in several forms.

The first form exists as , where is a linear combination of variables.

In this case, the only solution is if , simplifying the constraint to . Note that this solution also occurs if the constraint is in the form due to the same conclusion (only solution ).

Second form a linear constraint can exist in is where remains a linear combination of variables and constant .

In this case, we can describe an equivalent feasible solution by splitting the inequality into

We can understand this visually as the solution must lie between and , as shown below:

Number Line X Less Than C.png

The last case for linear constraints is when .

Visually, the solution space is the complement of the second solution above, resulting in the following representation:

Number Line for X Greater Than C.png

In expression form, the solutions can be written as:

As seen visually, the feasible region has a gap and thus non-convex. The expressions also make it impossible for both to simultaneously hold true. This means that it is not possible to transform constraints in this form to linear equations. An approach to reach a solution for this particular case exists in the form of Mixed-Integer Linear Programming, where only one of the equations above is “active”.

Absolute Values in Objective Functions


Numerical Example

We replace the absolute value quantities with a single variable:

We must introduce additional constraints to ensure we do not lose any information by doing this substitution:

The problem has now been reformulated as a linear programming problem that can be solved normally:

The optimum value for the objective function is , which occurs when and and .


There are no specific applications to Optimization with Absolute Values however it is necessary to account for at times when utilizing the simplex method.

Consider the problem Ax=b; max z= x c,jx,i. This problem cannot, in general, be solved with the simplex method. The problem has a simplex method solution (with unrestricted basis entry) only if c, are nonpositive (non-negative for minimizing problems).

The primary application of absolute-value functionals in linear programming has been for absolute-value or L(i)-metric regression analysis. Such application is always a minimization problem with all C(j) equal to 1 so that the required conditions for valid use of the simplex method are met.




The presence of an absolute value within the objective function prevents the use of certain optimization methods. Solving these problems requires that the function be manipulated in order to continue with linear programming techniques like the simplex method.


To be formatted:

  1. http://lpsolve.sourceforge.net/5.1/absolute.htm
  2. https://ocw.mit.edu/courses/sloan-school-of-management/15-053-optimization-methods-in-management-science-spring-2013/tutorials/MIT15_053S13_tut04.pdf
  3. https://www.ise.ncsu.edu/fuzzy-neural/wp-content/uploads/sites/9/2019/08/LP-Abs-Value.pdf