Difference between revisions of "Set covering problem"

From Cornell University Computational Optimization Open Textbook - Optimization Wiki
Jump to navigation Jump to search
(Added a brief description of the problem)
Line 1: Line 1:
 
Authors: Sherry Liang, Khalid Alanazi, Kumail Al Hamoud
 
Authors: Sherry Liang, Khalid Alanazi, Kumail Al Hamoud
 +
 +
The set covering problem is a significant NP-hard problem in combinatorial optimization. In the set covering problem, two sets are given: a set '''''S''''' of elements and a set '''''A''''' of subsets of the set '''''S'''''. Each subset in '''''A''''' is associated with a predetermined cost, and the union of all the subsets covers the set '''''S'''''. This combinatorial problem then concerns finding the optimal number of subsets whose union covers the universal set while minimizing the total cost.<span style="font-size: 8pt; position:relative; bottom: 0.3em;">1</span>
  
 
== Introduction ==
 
== Introduction ==
Line 25: Line 27:
  
 
== References ==
 
== References ==
 +
#Grossman, T., & Wool, A. (1997). Computational experience with approximation algorithms for the set covering problem. ''European Journal of Operational Research,'' ''101''(1), 81-92. doi:10.1016/s0377-2217(96)00161-0

Revision as of 16:12, 21 November 2020

Authors: Sherry Liang, Khalid Alanazi, Kumail Al Hamoud

The set covering problem is a significant NP-hard problem in combinatorial optimization. In the set covering problem, two sets are given: a set S of elements and a set A of subsets of the set S. Each subset in A is associated with a predetermined cost, and the union of all the subsets covers the set S. This combinatorial problem then concerns finding the optimal number of subsets whose union covers the universal set while minimizing the total cost.1

Introduction

Methodology

Example

Applications

Conclusion

References

  1. Grossman, T., & Wool, A. (1997). Computational experience with approximation algorithms for the set covering problem. European Journal of Operational Research, 101(1), 81-92. doi:10.1016/s0377-2217(96)00161-0