Sparse Reconstruction with Compressed Sensing: Difference between revisions

From Cornell University Computational Optimization Open Textbook - Optimization Wiki
Jump to navigation Jump to search
No edit summary
Line 46: Line 46:
<math>(1 - \delta_s) \| x \|_2 ^2 \leq \| \Phi x \|_2^2 \leq (1 + \delta_s) \| x \|_2 ^2</math>
<math>(1 - \delta_s) \| x \|_2 ^2 \leq \| \Phi x \|_2^2 \leq (1 + \delta_s) \| x \|_2 ^2</math>


Let <math>\Phi \in \mathbb{R}^{M \times N}</math> satisfy RIP, Let <math>[N]</math> be an index set For <math>s</math> is a restriction on <math>\mathbf{x}</math> denoted by <math>x_{|s}</math> <math>x \in \mathbb{R}^N</math> to <math>s</math> k-sparse <math>\mathbf{x}</math> s.t. RIP is satisfied the <math>s = |\Gamma|</math> i.e. <math>s \subseteq [N]</math>and <math>\Phi_{|s} \subseteq \Phi</math> where the columns of <math>\Phi_{|s}</math> is indexed by <math>i \in S</math>
Let <math>\Phi \in \mathbb{R}^{M \times N}</math> satisfy RIP, Let <math>[N]</math> be an index set For <math>s</math> is a restriction on <math>\mathbf{x}</math> denoted by <math>x_{|s}</math> <math>x \in \mathbb{R}^N</math> to <math>s</math> k-sparse <math>\mathbf{x}</math> s.t. RIP is satisfied the <math>s = supp(\mathbf{x})</math> i.e. <math>s \subseteq [N]</math>and <math>\Phi_{|s} \subseteq \Phi</math> where the columns of <math>\Phi_{|s}</math> is indexed by <math>i \in S</math>


In search for a unique solution we have the following <math> l_0 = |supp(x)|</math> optimization problem.
In search for a unique solution we have the following <math> l_0 = |supp(x)|</math> optimization problem.

Revision as of 16:41, 28 November 2021

Author: Ngoc Ly (SysEn 5800 Fall 2021)

Compressed Sensing (CS)

Compressed Sensing summary here

What is compression is synonymous with to the sparsity.

Introduction

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x \in \mathbb{R}^N} often not really sparse but approximately sparse

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi \in \mathbb{R}^{M \times N}} for iFailed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M \ll N} s a Random Gaussian or Bernoulli matrix

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y \in \mathbb{R}^M} are the observed y samples

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e \in \mathbb{R}^M} noise vector Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \| e \|_2 \leq \eta} k e k 2 ≤ η

s.t.

How can we reconstruct x from Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y = \Phi x + e}

The goal is to reconstruct Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x \in \mathbb{R}^N} given Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi}

Sensing matrix Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi} must satisfy RIP i.e. Random Gaussian or Bernoulli matrixies satisfies (cite)

let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [ N ] = \{ 1, \dots , N \} } be an index set Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [N]} enumerates the columns of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi} is an under determined systems with infinite solutions since Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M \ll N} . Why Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle l_2} norm does not work


The problem formulation is to recover sparse data Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{x} \in \mathbb{R}^N }


The support of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{x}} is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle supp(\mathbf{x}) = \{i \in [N] : \mathbf{x}_i \neq 0 \}} we say Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{x}} is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k} sparse when Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |supp(x)| \leq k}

We are interested in the smallest Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle supp(x)} , i.e. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle min(supp(x))}


Before we get into RIP lets talk about RIC

Restricted Isometry Constant (RIC) is the smallest Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta_{|s} \ s.t. \ s \subseteq [N]} that satisfies the RIP condition introduced by Candes, Tao

Random Gaussian and Bernoulli satisfies RIP

RIP defined as

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (1 - \delta_s) \| x \|_2 ^2 \leq \| \Phi x \|_2^2 \leq (1 + \delta_s) \| x \|_2 ^2}

Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi \in \mathbb{R}^{M \times N}} satisfy RIP, Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [N]} be an index set For Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s} is a restriction on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{x}} denoted by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_{|s}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x \in \mathbb{R}^N} to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s} k-sparse Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{x}} s.t. RIP is satisfied the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s = supp(\mathbf{x})} i.e. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s \subseteq [N]} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_{|s} \subseteq \Phi} where the columns of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_{|s}} is indexed by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i \in S}

In search for a unique solution we have the following Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle l_0 = |supp(x)|} optimization problem. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{\hat{s}} = \underset{s}{arg min} \| \mathbf{s}\|_0 \quad s.t. \quad \mathbf{y} = \Phi \mathbf{s}} , which is an NP-Hard.

From Results of Candes, Romberg, Tao, and Donoho

If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi} satisfies RIP and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{y}} is sparse the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle l_0} has a unique solution. The equivalent Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle l_1} convex program to the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle l_0} program. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{\hat{s}} = \underset{s}{arg min} \| \mathbf{s}\|_1 \quad s.t. \quad \mathbf{y} = \Phi \mathbf{s}}


x i , i f i ∈ S

( x | S ) i =

0 otherwise

RIP defined as

( 1 − δ s )k x k 22 ≤ k Φx k 22 ≤ ( 1 + δ s )k x k 22

3 Lemmas Page 267 Blumensath Davies IHT for CS

Lemma 1(Blumensath, Davis 2009 Iterative hard thresholding for compressed

sensing), For all index sets Γ and all Φ for which RIP holds with s = | Γ | that is

s = supp ( x )

1k Φ Γ T k 2 ≤

q

1 + δ | Γ | k y k 2

( 1 − δ | Γ | )k x Γ k 22 ≤ k Φ Γ T Φ Γ x Γ k 22 ≤ ( 1 + δ | Γ | )k x Γ k 22

and

k( I − Φ Γ T Φ Γ )k 2 ≤ δ | Γ | k x Γ k 2

SupposeΓ ∩ Λ = ∅

k Φ Γ T Φ Λ ) x Λ k 2 ≤ δ s k x Λ k 2

Lemma 2 (Needell Tropp, Prop 3.5 in CoSaMP: Iterative signal recovery

from incomplete and inaccurate √ samples)

If Φ satisfies RIP k Φx s k 2 ≤ 1 + δ s k x s k 2 , ∀ x s : k x s k 0 ≤ s, Then ∀ x

k Φx k 2 ≤

p

1 + δ s k x k 2 +

p

1 + δ s

k x k 1

sqrts

Lemma 3 (Needell Tropp, Prop 3.5 in CoSaMP: Iterative signal recovery

from incomplete and inaccurate samples)

Let x s be the best s-term approximation to x. Let x r = x − x s Let

y = Φx + e = Φx s + Φx r + e = Φx s + ẽ

If Φ satisfies RIP for sparsity s, then the norm of error ẽ is bounded by

k ẽ k 2 ≤

p

1 + δ s k x − x s k 2 +

p

1 + δ s

k x − x s k 1

+ k e k 2

s

∀ x

Theory

Gel’fand n-width

Errors E ( S, Φ, D )

Definition Mutual Coherence

Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi \in R^{M \times N}} , the mutual coherence Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu_\Phi} is defined by:</math>

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu_{\Phi} = \underset{i \neq j} {\frac{| \langle a_i, a_j \rangle |}{ \| a_i \| \| a_j \|}}}


We want a small µ A because it will be close ot the normal matrix, which

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z_v(t) = \nabla f_v(x(t)) = - \Phi_v^T( \mathbf{y} - \Phi \mathbf{x})} Then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^{n+1} = \mathcal{H}\left( \mathbf{x}^{(n)} - \tau \sum_{j \in N}^{N} z_v^{(n)}\right)}

Define the threashholding operators as: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{H}_s[\mathbf{x}] = \underset{z \in \sum_s}{argmin} \| x - \Phi \mathbf{x}\|_2} selects the best-k term approximation for some k

will satisfies RIP

Stopping criterion is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \| y - \Phi \mathbf{x}^{(n)}\|_2 \leq \epsilon}

Algorithm IHT

  • Initialize Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi, \mathbf{y}, \mathbf{e} \ \mbox{with} \ \mathbf{y} = \mathbf{\Phi} \mathbf{x} | \mathbf{e} and \mathfrak{M}}
  • output Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle IHT(\mathbf{y}, \mathbf{\Phi}, \mathfrak{M}) }
  • Set Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^{(0)} = \mathbf{0}}
  • While halting criterion false do
    • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^{(n+1)} \leftarrow \mathcal{H}_{\mathfrak{M} \left[ x^{(n) + \Phi^T (\mathbf{y} - \mathbf{\Phi x}^{(n)})}\right]}}
    • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n \leftarrow n + 1 }
    • end while
  • return: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle IHT(\mathbf{y}, \mathbf{\Phi}, \mathfrak{M}) \leftarrow \mathbf{x}^{(n)}}

Numerical Example

Iterative Hard Thresholding IHT


Check if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi} satisfies RIP with mutual coherence.

Applications

Distributed Systems peer-to-peer network

Collaborative sensor networks for energy savings.

Distributed Systems where Energy needs to be preserved.

Conclusion

References

[1]


[2]

[3]

[4]


[5]


[6]


[7]

[8]

[9]

  1. 2. Emmanuel J. Candès and Terence Tao. Decoding by linear programming. IEEE Trans. Inf. Theory, 51(12):4203–4215, 2005.
  2. 5. Stephen A. Vavasis. Elementary proof of the spherical section property for random matrices. Univer-sity of Waterloo, Waterloo,Technical report, 2009.
  3. 6. Angshul Majumdar. Compressed sensing for engineers. Devices, circuits, and systems. CRC Press, Taylor & Francis Group, Boca Raton, FL, 2019. Includes bibliographical references and index.
  4. 7. Simon Foucart and Holger Rauhut. A mathematical introduction to compressive sens- ing. Applied and numerical harmonic analysis. Birkhäuser, New York [u.a.], 2013.
  5. 8. D. L. Donoho. Compressed sensing. 52:1289–1306, 2006.
  6. 12. E. J. Candes, J. Romberg, and T. Tao. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. 52:489–509, 2006.
  7. 16. Giulio Coluccia, Chiara Ravazzi, and Enrico Magli. Compressed sensing for dis- tributed systems, 2015.
  8. 17. Mohammed Rostami. Compressed sensing with side information on feasible re- gion, 2013.
  9. 18. Thomas Blumensath and Mike E. Davies. Iterative hard thresholding for com- pressed sensing. May 2008.