Genetic algorithm: Difference between revisions

From Cornell University Computational Optimization Open Textbook - Optimization Wiki
Jump to navigation Jump to search
No edit summary
Line 16: Line 16:
The initial population is randomly generated:
The initial population is randomly generated:
{| class="wikitable"
{| class="wikitable"
|+
!Chromosome (Binary)
!Chromosome (Binary)
!x (Decimal)
!x (Decimal)
Line 38: Line 37:
Calculate the fitness values:  
Calculate the fitness values:  
{| class="wikitable"
{| class="wikitable"
|+
!Chromosome
!Chromosome
!<math>x</math>
!<math>x</math>
Line 59: Line 57:
|81
|81
|}
|}
===== 1.2.2 Selection =====
Use roulette wheel selection to choose parents for crossover. Selection probabilities are calculated as:
<math>P(\text{Chromosome}) = \frac{\text{Fitness}}{\text{Total Fitness}}.</math>
Thus,
'''Total Fitness <math>=324+49+625+81=1079</math>'''
'''Total Fitness <math>=324+49+625+81=1079</math>'''
Compute the selection probabilities:
{| class="wikitable"
! Chromosome !! <math>f(x)</math> !! Selection Probability
|-
| 10010 || <math>324</math> || <math>\frac{324}{1,079} \approx 0.3003</math>
|-
| 00111 || <math>49</math> || <math>\frac{49}{1,079} \approx 0.0454</math>
|-
| 11001 || <math>625</math> || <math>\frac{625}{1,079} \approx 0.5792</math>
|-
| 01001 || <math>81</math> || <math>\frac{81}{1,079} \approx 0.0751</math>
|}
Cumulative probabilities:
{| class="wikitable"
|-
! Chromosome !! Cumulative Probability
|-
| 10010 || <math>0.3003</math>
|-
| 00111 || <math>0.3003 + 0.0454 = 0.3457</math>
|-
| 11001 || <math>0.3457 + 0.5792 = 0.9249</math>
|-
| 01001 || <math>0.9249 + 0.0751 = 1.0000</math>
|}
Random numbers for selection:
<math>r_1 = 0.32, \quad r_2 = 0.60, \quad r_3 = 0.85, \quad r_4 = 0.10</math>
Selected parents:
* Pair 1: 00111 and 11001 
* Pair 2: 11001 and 10010
===== 3. Crossover =====
Crossover probability: <math>P_c = 0.7</math>
'''Pair 1:''' Crossover occurs at position 2.
* Parent 1: <math>00|111</math> 
* Parent 2: <math>11|001</math> 
* Children: <math>00001 \ (x = 1)</math>, <math>11111 \ (x = 31)</math>
'''Pair 2:''' No crossover. 
* Children: Child 3: <math>11001 \ (x = 25)</math>, Child 4: <math>10010 \ (x = 18)</math>

Revision as of 18:56, 12 December 2024

Author: Yunchen Huo (yh2244), Ran Yi (ry357), Yanni Xie (yx682), Changlin Huang (ch2269), Jingyao Tong (jt887) (ChemE 6800 Fall 2024)

Stewards: Nathan Preuss, Wei-Han Chen, Tianqi Xiao, Guoqing Hu

Introduction

Algorithm Discussion

Numerical Example

1. Simple Example

We aim to maximize , where . Chromosomes are encoded as 5-bit binary strings since the binary format of the maximum value 31 is 11111.

1.1 Initialization (Generation 0)

The initial population is randomly generated:

Chromosome (Binary) x (Decimal)
10010 18
00111 7
11001 25
01001 9

1.2 Generation 1

1.2.1 Evaluation

Calculate the fitness values:

Chromosome
10010 18 324
00111 7 49
11001 25 625
01001 9 81
1.2.2 Selection

Use roulette wheel selection to choose parents for crossover. Selection probabilities are calculated as:

Thus,

Total Fitness

Compute the selection probabilities:

Chromosome Selection Probability
10010
00111
11001
01001

Cumulative probabilities:

Chromosome Cumulative Probability
10010
00111
11001
01001

Random numbers for selection:

Selected parents:

  • Pair 1: 00111 and 11001
  • Pair 2: 11001 and 10010
3. Crossover

Crossover probability:

Pair 1: Crossover occurs at position 2.

  • Parent 1:
  • Parent 2:
  • Children: ,

Pair 2: No crossover.

  • Children: Child 3: , Child 4: