Genetic algorithm: Difference between revisions

From Cornell University Computational Optimization Open Textbook - Optimization Wiki
Jump to navigation Jump to search
No edit summary
Line 1: Line 1:
Author: Yunchen Huo (yh2244), Ran Yi (ry357), Yanni Xie (yx682), Changlin Huang (ch2269), Jingyao Tong (jt887) (ChemE 6800 Fall 2024)
lAuthor: Yunchen Huo (yh2244), Ran Yi (ry357), Yanni Xie (yx682), Changlin Huang (ch2269), Jingyao Tong (jt887) (ChemE 6800 Fall 2024)


Stewards: Nathan Preuss, Wei-Han Chen, Tianqi Xiao, Guoqing Hu
Stewards: Nathan Preuss, Wei-Han Chen, Tianqi Xiao, Guoqing Hu
Line 7: Line 7:


== Algorithm Discussion ==
== Algorithm Discussion ==
The Genetic Algorithm was first introduced by John H. Holland
<ref> Holland, J. H. (1973). Genetic algorithms and the optimal allocation of trials. SIAM Journal on Computing, 2(2), 88–105 </ref>
in 1973. It is an optimization technique based on Charles Darwin’s theory of evolution by natural selection.[[File:GA.drawio.png|421x501px|frameless|thumb|right]"Figure 1:"" Flowchart for Genetic Algorithm]


Before diving into the algorithm, here are definitions of the basic terminologies.
* Gene: The smallest unit that makes up the chromosome (decision variable)
* Chromosome: A group of genes, where each chromosome represents a solution (potential solution)
* Population: A group of chromosomes (a group of potential solutions)
GA involves the following seven steps:
# Initialization
#* Randomly generate the initial population for a predetermined population size
# Evaluation
#* Evaluate the fitness of every chromosome in the population to see how good it is. Higher fitness implies better solution, making the chromosome more likely to be selected as a parent of next generation
# Selection
#* Natural selection serves as the main inspiration of GA, where chromosomes are randomly selected from the entire population for mating, and chromosomes with higher fitness values are more likely to be selected <ref name="Mirjalili"> Mirjalili, S. (2018). Genetic Algorithm. Evolutionary Algorithms and Neural Networks, Springer, pp. 43–56 </ref>.
# Crossover
#* The purpose of crossover is to create superior offspring (better solutions) by combining parts from each selected parent chromosome. There are different types of crossover, such as single-point and double-point crossover <ref name="Mirjalili" />. In single-point crossover, the parent chromosomes are swapped before and after a single point. In double-point crossover, the parent chromosomes are swapped between two points <ref name="Mirjalili" />.
# Mutation
#* A mutation operator is applied to make random changes to the genes of children's chromosomes, maintaining the diversity of the individual chromosomes in the population and enabling GA to find better solutions<ref name="Mirjalili" />.
# Insertion
#* Insert the mutated children chromosomes back into the population
# Repeat 2-6 until a stopping criteria is met
#* Maximum number of generations reached
#* No significant improvement from newer generations
#* Expected fitness value is achieved
== Numerical Example ==
== Numerical Example ==


Line 128: Line 101:
* Pair 2: 11001 and 10010
* Pair 2: 11001 and 10010


===== 3. Crossover =====
===== 1.2.3 Crossover =====
Crossover probability: <math>P_c = 0.7</math>
Crossover probability: <math>P_c = 0.7</math>


Line 139: Line 112:
* Children: Child 3: <math>11001 \ (x = 25)</math>, Child 4: <math>10010 \ (x = 18)</math>
* Children: Child 3: <math>11001 \ (x = 25)</math>, Child 4: <math>10010 \ (x = 18)</math>


===== 1.2.4 Mutation =====
Mutation probability: <math>P_m = 0.1</math> 
'''Child 1:''' <math>00001</math> (bits: <math>0 \ 0 \ 0 \ 0 \ 1</math>). 
* Mutations: Bit 1 and Bit 4 flip. 
* Resulting chromosome: <math>10011 \ (x = 19)</math>.
'''Child 2:''' <math>11111</math> (bits: <math>1 \ 1 \ 1 \ 1 \ 1</math>). 
* Mutation: Bit 3 flips. 
* Resulting chromosome: <math>11011 \ (x = 27)</math>.
'''Child 3:''' <math>11001</math> (bits: <math>1 \ 1 \ 0 \ 0 \ 1</math>). 
* Mutations: Bit 1 and Bit 5 flip. 
* Resulting chromosome: <math>01000 \ (x = 8)</math>.
'''Child 4:''' <math>10010</math> (bits: <math>1 \ 0 \ 0 \ 1 \ 0</math>). 
* Mutations: Bit 1 and Bit 3 flip. 
* Resulting chromosome: <math>00110 \ (x = 6)</math>.
===== 1.2.5 Insertion =====
{| class="wikitable"
|-
! Chromosome !! <math>x</math> !! <math>f(x)</math>
|-
| 10011 || <math>19</math> || <math>361</math>
|-
| 11011 || <math>27</math> || <math>729</math>
|-
| 01000 || <math>8</math> || <math>64</math>
|-
| 00110 || <math>6</math> || <math>36</math>
|}
==== '''1.3 Generation 2''' ====
===== 1.3.1 Evaluation =====
Calculate the fitness values:
{| class="wikitable"
|-
! Chromosome !! <math>x</math> !! <math>f(x)</math>
|-
| 10011 || <math>19</math> || <math>361</math>
|-
| 11011 || <math>27</math> || <math>729</math>
|-
| 01000 || <math>8</math> || <math>64</math>
|-
| 00110 || <math>6</math> || <math>36</math>
|}
===== 1.3.2 Selection =====
'''Total fitness:''' 
<math>\text{Total Fitness} = 361 + 729 + 64 + 36 = 1,190</math>
Compute selection probabilities:
{| class="wikitable"
|-
! Chromosome !! <math>f(x)</math> !! Selection Probability
|-
| 10011 || <math>361</math> || <math>\frac{361}{1,190} \approx 0.3034</math>
|-
| 11011 || <math>729</math> || <math>\frac{729}{1,190} \approx 0.6126</math>
|-
| 01000 || <math>64</math> || <math>\frac{64}{1,190} \approx 0.0538</math>
|-
| 00110 || <math>36</math> || <math>\frac{36}{1,190} \approx 0.0303</math>
|}
Cumulative probabilities:
{| class="wikitable"
|-
! Chromosome !! Cumulative Probability
|-
| 10011 || <math>0.3034</math>
|-
| 11011 || <math>0.3034 + 0.6126 = 0.9160</math>
|-
| 01000 || <math>0.9160 + 0.0538 = 0.9698</math>
|-
| 00110 || <math>0.9698 + 0.0303 = 1.0000</math>
|}
Random numbers for selection:
<math>r_1 = 0.20, \quad r_2 = 0.50, \quad r_3 = 0.80, \quad r_4 = 0.95</math>
Selected parents: 
* Pair 1: 10011 and 11011 
* Pair 2: 11011 and 01000
===== 1.3.3 Crossover =====
Crossover probability: <math>P_c = 0.7</math> 
'''Pair 1:''' Crossover occurs at position 2. 
* Parent 1: <math>10|011</math> 
* Parent 2: <math>11|011</math> 
* Children: <math>10011 \ (x = 19)</math>, <math>11011 \ (x = 27)</math>
'''Pair 2:''' Crossover occurs at position 4. 
* Parent 1: <math>11|011</math> 
* Parent 2: <math>01|000</math> 
* Children: <math>11000 \ (x = 24)</math>, <math>01011 \ (x = 11)</math>
===== 1.3.4 Mutation =====
Mutation probability: <math>P_m = 0.1</math> 
* '''Child 1:''' No mutations. <math>\text{Resulting Chromosome: } 10011</math>.
* '''Child 2:''' Bit 1 flips. <math>\text{Resulting Chromosome: } 01011 \ (x = 11)</math>.
* '''Child 3:''' Bit 5 flips. <math>\text{Resulting Chromosome: } 11010 \ (x = 26)</math>.
* '''Child 4:''' No mutations. <math>\text{Resulting Chromosome: } 11011</math>.
===== 1.3.5 Insertion =====
{| class="wikitable"
|-
! Chromosome !! <math>x</math> !! <math>f(x)</math>
|-
| 10011 || <math>19</math> || <math>361</math>
|-
| 01011 || <math>11</math> || <math>121</math>
|-
| 11010 || <math>26</math> || <math>676</math>
|-
| 11011 || <math>27</math> || <math>729</math>
|}
==== 1.4 Conclusion ====
After 2 iterations, the best optimal solution we find is <math>f = 729, \ x = 27</math>. 
Due to the limitation of the page, we will not perform additional loops. In the following examples, we will show how to use code to perform multiple calculations on complex problems and specify stopping conditions.
=== 2. Complex Example ===
We aim to maximize the function: 
<math>f(x, y) = 21.5 + x \sin\left(4\pi x\right) + y \sin\left(20\pi y\right)</math> 
subject to the constraints: 
<math>-3.0 \leq x \leq 12.1, \quad 4.1 \leq y \leq 5.8.</math>
==== 2.1 Encoding the Variables ====
Each chromosome represents a pair of variables <math>x</math> and <math>y</math>. We encode these variables into binary strings: 
* <math>x</math>: <math>-3.0 \leq x \leq 12.1</math>, precision <math>0.1</math>, requiring <math>8</math> bits. 
* <math>y</math>: <math>4.1 \leq y \leq 5.8</math>, precision <math>0.01</math>, requiring <math>8</math> bits. 


== References ==
Each chromosome is a 16-bit binary string, where the first 8 bits represent <math>x</math> and the next 8 bits represent <math>y</math>.
<references />

Revision as of 22:41, 12 December 2024

lAuthor: Yunchen Huo (yh2244), Ran Yi (ry357), Yanni Xie (yx682), Changlin Huang (ch2269), Jingyao Tong (jt887) (ChemE 6800 Fall 2024)

Stewards: Nathan Preuss, Wei-Han Chen, Tianqi Xiao, Guoqing Hu

Introduction

Algorithm Discussion

Numerical Example

1. Simple Example

We aim to maximize , where . Chromosomes are encoded as 5-bit binary strings since the binary format of the maximum value 31 is 11111.

1.1 Initialization (Generation 0)

The initial population is randomly generated:

Chromosome (Binary) x (Decimal)
10010 18
00111 7
11001 25
01001 9

1.2 Generation 1

1.2.1 Evaluation

Calculate the fitness values:

Chromosome
10010 18 324
00111 7 49
11001 25 625
01001 9 81
1.2.2 Selection

Use roulette wheel selection to choose parents for crossover. Selection probabilities are calculated as:

Thus,

Total Fitness

Compute the selection probabilities:

Chromosome Selection Probability
10010
00111
11001
01001

Cumulative probabilities:

Chromosome Cumulative Probability
10010
00111
11001
01001

Random numbers for selection:

Selected parents:

  • Pair 1: 00111 and 11001
  • Pair 2: 11001 and 10010
1.2.3 Crossover

Crossover probability:

Pair 1: Crossover occurs at position 2.

  • Parent 1:
  • Parent 2:
  • Children: ,

Pair 2: No crossover.

  • Children: Child 3: , Child 4:
1.2.4 Mutation

Mutation probability:

Child 1: (bits: ).

  • Mutations: Bit 1 and Bit 4 flip.
  • Resulting chromosome: .

Child 2: (bits: ).

  • Mutation: Bit 3 flips.
  • Resulting chromosome: .

Child 3: (bits: ).

  • Mutations: Bit 1 and Bit 5 flip.
  • Resulting chromosome: .

Child 4: (bits: ).

  • Mutations: Bit 1 and Bit 3 flip.
  • Resulting chromosome: .
1.2.5 Insertion
Chromosome
10011
11011
01000
00110

1.3 Generation 2

1.3.1 Evaluation

Calculate the fitness values:

Chromosome
10011
11011
01000
00110
1.3.2 Selection

Total fitness:

Compute selection probabilities:

Chromosome Selection Probability
10011
11011
01000
00110

Cumulative probabilities:

Chromosome Cumulative Probability
10011
11011
01000
00110

Random numbers for selection:

Selected parents:

  • Pair 1: 10011 and 11011
  • Pair 2: 11011 and 01000
1.3.3 Crossover

Crossover probability:

Pair 1: Crossover occurs at position 2.

  • Parent 1:
  • Parent 2:
  • Children: ,

Pair 2: Crossover occurs at position 4.

  • Parent 1:
  • Parent 2:
  • Children: ,
1.3.4 Mutation

Mutation probability:

  • Child 1: No mutations. .
  • Child 2: Bit 1 flips. .
  • Child 3: Bit 5 flips. .
  • Child 4: No mutations. .
1.3.5 Insertion
Chromosome
10011
01011
11010
11011

1.4 Conclusion

After 2 iterations, the best optimal solution we find is .

Due to the limitation of the page, we will not perform additional loops. In the following examples, we will show how to use code to perform multiple calculations on complex problems and specify stopping conditions.


2. Complex Example

We aim to maximize the function: subject to the constraints:

2.1 Encoding the Variables

Each chromosome represents a pair of variables and . We encode these variables into binary strings:

  • : , precision , requiring bits.
  • : , precision , requiring bits.

Each chromosome is a 16-bit binary string, where the first 8 bits represent and the next 8 bits represent .