Genetic algorithm

From Cornell University Computational Optimization Open Textbook - Optimization Wiki
Jump to navigation Jump to search

Author: Yunchen Huo (yh2244), Ran Yi (ry357), Yanni Xie (yx682), Changlin Huang (ch2269), Jingyao Tong (jt887) (ChemE 6800 Fall 2024)

Stewards: Nathan Preuss, Wei-Han Chen, Tianqi Xiao, Guoqing Hu

Introduction

Algorithm Discussion

Numerical Example

1. Simple Example

We aim to maximize Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = x^2} , where . Chromosomes are encoded as 5-bit binary strings since the binary format of the maximum value 31 is 11111.

1.1 Initialization (Generation 0)

The initial population is randomly generated:

Chromosome (Binary) x (Decimal)
10010 18
00111 7
11001 25
01001 9

1.2 Generation 1

1.2.1 Evaluation

Calculate the fitness values:

Chromosome Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = x^2}
10010 18 324
00111 7 49
11001 25 625
01001 9 81

Total Fitness Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =324+49+625+81=1079}