Piecewise linear approximation

From Cornell University Computational Optimization Open Textbook - Optimization Wiki
Revision as of 23:41, 24 November 2021 by Thtan (talk | contribs)
Jump to navigation Jump to search

Authors: Tianhong Tan, Shoudong Zhu (CHEME 6800, 2021 Fall)

Introduction

Currently, approximating a complex non-linear function or smooth curve is very common in industry area. Like the very popular one, piecewise linear approximation, which is applied in a variety of real-world areas, such as signal processing and image processing in electronics information industry, pattern recognition in AI area[1]. The problem of piecewise linear approximation can be classified by which type of norms applied in approximating process, whether the length of segments is fixed or not and whether the approximation is continuity or discontinuity[2]. We can use piecewise linear approximation to represent any non-linear or linear function by any accuracy order by any accuracy by adding more nodes or segments until the accuracy is met[3]. The meaning of piecewise linear approximation's existence is it allow us to transform non-linear problem to be solved by linear formation, which is easier to be executed by machine and the amount of calculation is acceptable[4].

Theory, Methodology & Algorithms

For a function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} in a finite range Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [x_{1}, x_{n}]} , one can find Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} sampling points Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_{1}, x_{2}, ..., x_{n}} to evaluate the function values. Then the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} can be approximated by a series of linear segments Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [(x_{i}, f(x_{i})), (x_{i+1}, f(x_{i+1}))]} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i = 1, 2, ..., n-1} . Any given value Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x'} between Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_{i}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_{i+1}} can be written as the following form:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x'= \lambda x_{i}+(1-\lambda )x_{i+1}} (1)

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda } is a unique number between Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1} .

The approximation of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x')} is calculated by a convex combination of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x_{i})} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x_{i+1})} :

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_{a}(x')=\lambda f(x_{i})+(1-\lambda )f(x_{i+1})} (2)

For the ease of applications in a MILP solver, the above formulation is further developed to include both binary and continuous variables with several constraints to force the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x'} values become associated with the neighboring pair of consecutive break points. The constraints are listed below:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{i=0}^{n}h_{i}=1} (3)

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha _{i}\leq h_{i-1}+h_{i} (i=1,2,...,n)}



Numerical Example

Applications

Conclusion

References

  1. G. Manis, G. Papakonstantinou and P. Tsanakas, "Optimal piecewise linear approximation of digitized curves," Proceedings of 13th International Conference on Digital Signal Processing, 1997, pp. 1079-1081 vol.2, doi: 10.1109/ICDSP.1997.628552.
  2. J. G. Dunham, "Optimum Uniform Piecewise Linear Approximation of Planar Curves," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-8, no. 1, pp. 67-75, Jan. 1986, doi: 10.1109/TPAMI.1986.4767753.
  3. Optimal Piecewise Linear Approximation of Convex Functions A. Imamoto, B. Tang, Member, IAENG, Proceedings of the World Congress on Engineering and Computer Science 2008 WCECS 2008, October 22 - 24, 2008, San Francisco, USA
  4. Applied Mathematical Programming by Bradley, Hax, and Magnanti (Addison-Wesley,1977) http://web.mit.edu/15.053/www/AppliedMathematicalProgramming.pdf