Trust-region methods

From Cornell University Computational Optimization Open Textbook - Optimization Wiki
Jump to navigation Jump to search

Autor: Chun-Yu Chou (cc2398), Ting-Guang Yeh (ty262), Yun-Chung Pan (yp392), Chen-Hua Wang (cw893), Fall 2021

Introduction

Problem formulation

Numerical example

Here we will use the trust-region method to solve a classic optimization problem, the Rosenbrock function. The Rosenbrock function is a non-convex function, introduced by Howard H. Rosenbrock in 1960, which is often used as a performance test problem for optimization algorithms. This problem is solved using MATLAB's fminunc as the solver, with 'trust-region' as the solving algorithm which uses the preconditioned conjugate method.

The function is defined by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \min f(x,y)=100(y-x^2)^2+(1-x)^2}

The starting point chosen is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=0} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=0 } .


Iteration Process

Optimization trajectory of the example

Iteration 1: The algorithm starts from the initial point of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=0} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=0 } . The Rosenbrock function is visualized with a color coded map. For the first iteration, a full step was taken and the optimal solution (Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=0.25} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=0 } ) within the trust-region is denoted as a red dot.


Iteration 2: Start with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=0.25 } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=0 } . The new iteration gives a good prediction, which increases the trust-region's size. The new optimal solution within the trust-region is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=0.263177536 } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=0.061095029 } .

Iteration 3: Start with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=0.263177536 } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=0.061095029 } . The new iteration gives a poor prediction, which decreases the trust-region's size to improve the model's validity. The new optimal solution within the trust-region is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=0.371151679 } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=0.124075855 } .

...

Iteration 7: Start with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=0.765122406 } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=0.560476539 } . The new iteration gives a poor prediction, which decreases the trust-region's size to improve the model's validity. The new optimal solution within the trust-region is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=0.804352654 } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=0.645444179 } .


Iteration 8: Start with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=0.804352654 } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=0.645444179 } .The new iteration gives a poor prediction, therefore current best solution is unchanged and the radius for the trust-region is decreased.

...

At the 16th iteration, the global optimal solution is found, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=1 } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=1 } .

Summary of all iterations
Iterations f(x) x y Norm of step First-order optimality
1 1 0.25 0 1 2
2 0.953125 0.263178 0.061095 0.25 12.5
3 0.549578 0.371152 0.124076 0.0625 1.63
4 0.414158 0.539493 0.262714 0.125 2.74
5 0.292376 0.608558 0.365573 0.218082 5.67
6 0.155502 0.765122 0.560477 0.123894 0.954
7 0.117347 0.804353 0.645444 0.25 7.16
8 0.0385147 0.804353 0.645444 0.093587 0.308
9 0.0385147 0.836966 0.69876 0.284677 0.308
10 0.0268871 0.90045 0.806439 0.0625 0.351
11 0.0118213 0.953562 0.90646 0.125 1.38
12 0.0029522 0.983251 0.9659 0.113247 0.983
13 0.000358233 0.99749 0.994783 0.066442 0.313
14 1.04121e-05 0.999902 0.999799 0.032202 0.0759
15 1.2959e-08 1 1 0.005565 0.00213
16 2.21873e-14 1 1 0.000224 3.59E-06

Applications

Conclusion

References