Main Page: Difference between revisions

From Cornell University Computational Optimization Open Textbook - Optimization Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 96: Line 96:
       <li>[[Signomial problems]]</li>
       <li>[[Signomial problems]]</li>
       <li>[[Mixed-integer linear fractional programming (MILFP)]]</li>
       <li>[[Mixed-integer linear fractional programming (MILFP)]]</li>
       <li>[[Convex Generalized disjunctive programming (GDP)]]</li>
       <li>[[Convex generalized disjunctive programming (GDP)]]</li>
       <li>[[Nonconvex Generalized disjunctive programming (GDP)]]</li>
       <li>[[Nonconvex generalized disjunctive programming (GDP)]]</li>
       <li>[[Branch and bound (BB) for MINLP]]</li>
       <li>[[Branch and bound (BB) for MINLP]]</li>
       <li>[[Branch and cut for MINLP]]</li>
       <li>[[Branch and cut for MINLP]]</li>

Revision as of 07:31, 19 October 2020

Welcome to the Cornell University Computational Optimization Open Textbook

This electronic textbook is a student-contributed open-source text covering a variety of topics on process optimization.
If you have any comments or suggestions on this open textbook, please contact Professor Fengqi You.

Linear Programming (LP)

NonLinear Programming (NLP)

Deterministic Global Optimization

Dynamic Programming

Traditional Applications

Mixed-Integer Linear Programming (MILP)

Mixed-Integer NonLinear Programming (MINLP)

Optimization under Uncertainty

Optimization for Machine Learning and Data Analytics

Emerging Applications

Cornell Prof. Fengqi You Research Group